Southeast Ocean and Coastal Acidification Network


SECOORA and the National Oceanic and Atmospheric Administration’s Ocean Acidification Program are facilitating the formation of the Southeast Ocean and Coastal Acidification Network (SOCAN) to support and encourage discussions on ocean and coastal acidification in the Southeast region.

SOCAN will enhance collaborations and communications throughout the region about ocean and coastal acidification regional drivers; approaches to monitoring; state-of- the science; and vulnerable species and ecosystems; among other concerns.

Ocean acidification (OA) is a global change in ocean chemistry resulting from the ocean’s uptake of carbon dioxide (CO2). Due to the burning of fossil fuels, land use change, and cement production, CO2 is increasing in the atmosphere. 1

As the ocean absorbs more CO2, it becomes more acidic (pH levels lower) causing chemical changes in the carbonate system of the ocean.  These changes can affect and threaten a variety of organisms particularly those with calcium carbonate shells or skeletons (i.e. corals, shellfish, plankton). 2345  Recent studies have shown that the physiology of non-calcifying species such as fish, seagrass and harmful algal species, are also affected by these changes. 678

Complex physical and biogeochemical interactions present a challenge to understanding the impacts of acidification at local and regional scales.9  It is necessary to identify the broader impacts of OA in the Southeast so we can adapt to changes in ocean chemistry and and its potential effects on marine ecosystems. Join SOCAN's listserv today to receive updates about webinars, resources, and other news. Please contact socan@secoora.org if you have questions or comments about SOCAN.

 

-------- 

1 Sabine,C.L., Feely, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong,   C.S., Wallace, D.W.R., Tilbrook, B., Millero, F.J., Peng, T.H., Kozyr, A., Ono, T., Rios, A.F.  2004.  The Oceanic Sink for CO2.  Science305: 367-371

2 Fabricius,K.E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De’ath, G., Okazaki, R., Muehllehnere, N., Glas, M.S., Lough, J.M.  2011.  Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations.  Nature Climate Change 1: 165-169

3 Okazaki, R.R., Swart, P.K.,Langdon, C.R.  Coral Reefs.  2013.  Stress-tolerant corals of Florida Bay are vulnerable to ocean acidification. Coral Reefs doi: 10.1007/s00338‐013‐1015‐3.

4 Barton, A., Hales, B., Waldbusser, G.G., Langdon, C., Feely, R.A.  2012.  The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects.  Limnology & Oceanography, 57: 698-710

5 Beare, D., McQuatters-Gollop, A. van der Hammen, T., Machiels, M., Teoh, S.J., Hall-Spencer, J.M.  2013.  Long-Term Trends in Calcifying Plankton and pH in the North Sea.    PLoS ONE 8(5): e61175.

6 Bignami, S., Enochs, I.C., Manzello, D.P., Spaunagle, S., Cowen, R.K. 2013.  Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function.  Proceedings of the National Academy of Sciences 110: 7366-7370

7 Fabricius et al. 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations.  Nature Climate Change 1: 165-169

8 Tatters, A.O., Fu, F-X., Hutchins, D.A.  2012.  High CO2 and Silicate Limitation Synergistically Increase the Toxicity of Pseudo-nitzschia fraudulenta. PLoS ONE 7: 3211

9 Washington State Blue Ribbon Panel on Ocean Acidification.  2012.  Ocean Acidification: From Knowledge to Action Summary Report

 

 

 

 

Webinars
Listserv
Calendar
Resources

SECOORA and the National Oceanic and Atmospheric Administration’s Ocean Acidification Program are facilitating the formation of the Southeast Ocean and Coastal Acidification Network (SOCAN) to support and encourage discussions on ocean and coastal acidification in the Southeast region.

SOCAN will enhance collaborations and communications throughout the region about ocean and coastal acidification regional drivers; approaches to monitoring; state of the science; and vulnerable species and ecosystems; among other concerns.

Ocean acidification (OA) is a global change in ocean chemistry resulting from the ocean’s uptake of carbon dioxide (CO2). Due to the burning of fossil fuels, land use change, and cement production, CO2 is increasing in the atmosphere 1 .

As the ocean absorbs more CO2, it becomes more acidic (pH levels lower) and causes chemical changes in the carbonate system of the ocean.  These changes can affect and threaten a variety of organisms particularly those with calcium carbonate shells or skeletons (i.e. corals, shellfish, plankton) 2345 .  Recent studies have shown the physiology of non-calcifying species such as fish, seagrass and harmful algal species are also affected by these changes 678 .

Understanding the impacts of acidification on local and regional scales presents a  challenge due to the complex physical and biogeochemical interactions 9 . It is necessary to identify the broader impacts of OA in the Southeast so we can adapt to changes in ocean chemistry and marine ecosystems. Join SOCAN's listserv today to receive updates about webinars, resources, and other news.
 

Join SOCAN's Email List

 

-------- 

1 Sabine,C.L., Feely, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong,   C.S., Wallace, D.W.R., Tilbrook, B., Millero, F.J., Peng, T.H., Kozyr, A., Ono, T., Rios, A.F.  2004.  The Oceanic Sink for CO2.  Science305: 367-371

2 Fabricius,K.E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De’ath, G., Okazaki, R., Muehllehnere, N., Glas, M.S., Lough, J.M.  2011.  Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations.  Nature Climate Change 1: 165-169

3 Okazaki, R.R., Swart, P.K.,Langdon, C.R.  Coral Reefs.  2013.  Stress-tolerant corals of Florida Bay are vulnerable to ocean acidification. Coral Reefs doi: 10.1007/s00338‐013‐1015‐3.

4 Barton, A., Hales, B., Waldbusser, G.G., Langdon, C., Feely, R.A.  2012.  The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects.  Limnology & Oceanography, 57: 698-710

5 Beare, D., McQuatters-Gollop, A. van der Hammen, T., Machiels, M., Teoh, S.J., Hall-Spencer, J.M.  2013.  Long-Term Trends in Calcifying Plankton and pH in the North Sea.    PLoS ONE 8(5): e61175.

6 Bignami, S., Enochs, I.C., Manzello, D.P., Spaunagle, S., Cowen, R.K. 2013.  Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function.  Proceedings of the National Academy of Sciences 110: 7366-7370

7 Fabricius et al. 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations.  Nature Climate Change 1: 165-169

8 Tatters, A.O., Fu, F-X., Hutchins, D.A.  2012.  High CO2 and Silicate Limitation Synergistically Increase the Toxicity of Pseudo-nitzschia fraudulenta. PLoS ONE 7: 3211

9 Washington State Blue Ribbon Panel on Ocean Acidification.  2012.  Ocean Acidification: From Knowledge to Action Summary Report