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Highlights 

• A machine learning algorithm was developed to predict high cross-currents above a threshold speed
near Port Miami up to 48 hrs in advance as represented by HYCOM output variables

• Model accuracy was quantified by examining True and False Positive Rates, and True and False
Negative Rates, and by constructing Receiver Operating Curves

• Initial predictor variables were downstream Gulf Stream frontal positions
• The highest cross-currents examined were 2 sd above the mean, and were predicted with ~90%

TPR, and ~66% TNR
• Accuracy declined for lower current thresholds
• The addition of surface winds as a predictor increased the TPR and TNR for lower current

thresholds, and decreased their False Positive and False Negative rates in all cases
• An initial evaluation of observational front data for use in an operational tool was performed

1. Background

The objective of this project is to create a cross-current prediction tool for the Port Miami shipping 
channel using machine learning methods. This report details efforts to develop such a tool based on 
output from the Hybrid Coordinate Ocean Model (HYCOM) system and observational data. 

The data examined to date are: i) Acoustic Doppler Current Profiler (ADCP) current data from the 
vicinity of Port Miami.  ii) the frontal position analysis provided by Fleet Numerical Meteorology and 
Oceanography Center (FNMOC) that includes the front positions throughout most of the North Atlantic 
and Gulf of Mexico.  

1. The HYCOM

HYCOM is a global ocean circulation model (Bleck and Benjamin, 1993; Bleck and Boudra, 1981).  
There are two different versions of HYCOM, one run by NOAA, and another run by the US Navy.  The 
horizontal Resolution is 1/12º, and the vertical structure is represented by 40 levels (interpolated) [0 2 4 6 
8 10 12 15 20 25 30 35 40 45 50 60 70 80 90 100 125 150 200 250 300 350 400 500 600 700 800 900 
1000 1250 1500 2000 2500 3000 4000 5000] meters. Output variables include water level, and 
temperature, salinity, and currents through the water column. 

1

mailto:smeyers@usf.edu
mailto:mluther@usf.edu


Output fields of surface elevation and surface currents from HYCOM was obtained from 
https://www.hycom.org/ at ∆𝑡𝑡 = 3 hr time steps over the eastern Gulf of Mexico, the Florida Straits, and 
the eastern Florida coast (Figure 1) from January 1, 2018 through February 19, 2020. The model output 
variables had been interpolated to a fixed horizontal grid indexed (𝑗𝑗, 𝑖𝑖). The grid point closest to the 
mouth of the Port Miami Channel was identified as (𝑗𝑗0, 𝑖𝑖0). Model land boundaries used no-slip 
conditions and open boundaries use a sponge layer for energy dissipation. Additional details are provided 
by Bleck et al. (2001). The currents at (𝑗𝑗0, 𝑖𝑖0) were significantly lower than those at (𝑗𝑗0, 𝑖𝑖0+1) due to the 
former being strongly influenced by the no-slip boundary at (𝑗𝑗0, 𝑖𝑖0-1). Values of the surface merdional 
current 𝑣𝑣(𝑗𝑗0, 𝑖𝑖0) were < 0 (southward) about 5% of the time. This was likely due to recirculation eddies, 
but these were not the focus of this study and not examined further.  

Figure 1. The polar projection used to define frontal position. Lines are the FNMOC frontal analysis for the first half 
of 2021. Colors are different dates.  

The latitude (𝜃𝜃) and longitude (𝜙𝜙) of the Gulf Stream front positionv(𝜃𝜃,𝜙𝜙) at time step 𝑛𝑛, was determined 
using a polar projection along 𝑘𝑘 = 1, … ,𝑁𝑁 lines that captured the turning of the Florida Current (Fig. 1). 
The 𝑘𝑘 = 𝑁𝑁 = 30 line was zonal along the latitude of the Port Miami ADCP. The model current speed was 
interpolated to 100 points along each radial line using bicubic splines. The location of the maximum 
current speed along each radial line was determined for each model time-step. Differences between the 
position at time step 𝑛𝑛 and the time-averaged position �(𝜃𝜃𝑘𝑘𝑘𝑘,𝜙𝜙𝑘𝑘𝑘𝑘) − (�̅�𝜃𝑘𝑘 ,𝜙𝜙�𝑘𝑘)� = Δ𝜙𝜙𝑘𝑘𝑘𝑘 were used to find 
i) the relation between 𝑣𝑣(𝑗𝑗𝑁𝑁𝑘𝑘, 𝑖𝑖𝑁𝑁𝑘𝑘) and the front position (𝜃𝜃𝑁𝑁𝑘𝑘,𝜙𝜙𝑁𝑁𝑘𝑘), and ii) the time-lagged correlation of
the front near the port Δ𝜙𝜙𝑁𝑁𝑘𝑘 and lagged frontal positions Δ𝜙𝜙𝑘𝑘(𝑘𝑘−𝑚𝑚).

The wind fields used to drive the HYCOM surface stress vectors were from the Climate Forecast System 
(CFS) and transformed to the model grid. These gridded files were obtained from  
http://tds.hycom.org/thredds/catalog/datasets/force/ncep_cfsv2/netcdf/catalog.html over the same time 
period as the model elevation and current output. The zonal and meridional wind components (𝑤𝑤1,𝑤𝑤2) 
where each tested as a predictor variable. No benefit was found to including 𝑤𝑤1 in the predictor set, so it 
will not be examined further in this report. The subsequent use of “wind” therefore only refers to the 𝑤𝑤2 
component.
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2. Satellite Frontal Analysis 

Frontal analyses provided by FNMOC were based on sea surface temperature (SST) satellite images 
composited over the course of a day or longer (Figure 2). Compositing was needed because cloud cover 
often obscures large portions of any individual image. Isotherms are identified and used to define the 
frontal position. The composited data are released every 2-4 days from 2015 through mid-2021. Each 
frontal segment is identified with the corresponding date of its analysis. The composite nature of these 
images removes any time association from the frontal position. Only the date is available, making these 
unsuitable for short-term (12-48 hr) predictions. Future work should investigate the use of the individual 
SST images, which have a date and time signature, as a predictor variable.  

 

Figure 2. FNMOC front analysis for January 1, 2019. Colors are surface temperature from 26°-92°F. 

3. Methods 

3.1. HYCOM Front Position 

Before spatial interpolation, the front was found about 8% of the time at (𝑗𝑗0, 𝑖𝑖0+2) and was most common 
at 𝑖𝑖0+3 and 𝑖𝑖0+4, the last two being on either side of the mean front position for 𝑗𝑗0 (Figure 3). Together, 
the latter represented about 76% of all front positions. During most of the time period examined, the front 
at 𝑗𝑗0 was usually ±2 grid cells from its mean longitudinal position. The mean current speed and the 
maximum speed at (𝑗𝑗0, 𝑖𝑖0) increased as the distance from the port Δ𝜙𝜙𝑁𝑁𝑘𝑘 decreased, with the exception 
when the front was at (𝑗𝑗0, 𝑖𝑖0+1). However, this latter case only occurred in ~0.03% of the data, so this 
condition was not well-represented in the analysis.  

The front position Δ𝜙𝜙𝑁𝑁𝑘𝑘 was correlated with its position further to the south determined by the polar 
projection,  

 𝜌𝜌𝑘𝑘𝑁𝑁 =
1

2𝑀𝑀𝜎𝜎𝑁𝑁𝜎𝜎𝑘𝑘
� �Δ𝜙𝜙𝑁𝑁𝑘𝑘Δ𝜙𝜙𝑘𝑘(𝑘𝑘+𝑚𝑚)�
𝑀𝑀

𝑚𝑚=−𝑀𝑀

 

 

(1) 
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where 𝜎𝜎 represents the standard deviations of the frontal position for each time series, 𝑘𝑘 ≤ 𝑁𝑁, and 𝑀𝑀 was 
chosen to encompass the expected time delay of maximum correlation based on the speed of meander 
propagation. A similar analysis was done for the correlation between current speed near the port and the 
frontal positions. The lagged correlation of meander propagation (1) was fairly strong, as is readily 
apparent in Figure 4. For a delay of ~12 hr, 𝜌𝜌 peaked at 0.72 for 𝑘𝑘=25, and 𝜌𝜌 peaked at 0.65 for 𝑘𝑘=20 for 
a delay of 24 hr. The effect of propagation was less clear in the correlation between ∆𝜙𝜙 and the current 
speed at (𝑗𝑗0, 𝑖𝑖0) (Figure 4). The maximum |𝜌𝜌| was <0.3 at the locations of peak correlation for the 
meanders.  

 

 

Figure 3. HYCOM meridional speed at (𝑖𝑖0,𝑗𝑗0) as a function of frontal position along 𝑗𝑗0 (black). The mean 
(circle), and ± standard deviation (error bars). Long-term mean speed (blue) and long-term mean 
longitude of front (dashed). The percentage of time the front was identified at each location is indicated. 

 

Figure 4. Lag correlation of 𝛥𝛥𝜙𝜙𝑘𝑘(𝑘𝑘+𝑚𝑚)with (upper) 𝛥𝛥𝜙𝜙𝑁𝑁𝑘𝑘, and (lower) 𝑣𝑣(𝑗𝑗0, 𝑖𝑖0). 
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These initial results indicate: 1) the propagation of Gulf Stream meanders impact the frontal position at 
the port channel. 2) The frontal position impacts, but is not highly-correlated with, the channel cross-
currents. 3) The impacts only occur for large negative frontal positions, indicating some threshold-type 
behavior. Machine learning algorithms are often used where conventional correlative techniques do not 
apply, but require the estimation of a boundary or threshold. 

3.2 Wind 

The wind at the time of the predicted current (time step 𝑛𝑛) and the same (𝑗𝑗0, 𝑖𝑖0) grid point was also used 
as a predictor variable. Reasonably accurate forecast winds are routinely available up to 48 hours in 
advance over the United States and its nearshore waters. The winds used in this study represent such 
forecasts, though the values used were based on real hindcast and possibly had more accuracy than actual 
forecast wind vectors. This is an issue that would need to be addressed in future studies. 

3.3. Logistic Regression 

The findings in 3.1 might suggest useful predictions of currents 𝑣𝑣(𝑗𝑗0, 𝑖𝑖0) cannot be readily made solely 
using correlations with frontal positions to the south. However, extreme values of 𝑣𝑣(𝑗𝑗0, 𝑖𝑖0) were most 
commonly found when the frontal position was at (𝑗𝑗0, 𝑖𝑖0+2), so some relation between currents and 
meander position existed, indicating a potential predictability that could be useful for forecasting high 
currents. Since such a forecast scheme could not be based on correlation, a categorical approach was 
explored. Machine learning algorithms have a high level of skill in such problems, so logistic regression 
was developed as a proto-type prediction tool. 

Logistic regression (LR) is widely used to represent a dichotomous (2-valued) variable (𝑦𝑦) that has a 
single transition between one value and the other (generally 0 and 1), dependent upon predictors 𝑿𝑿 (Hilbe, 
2016; Hosmer Jr et al., 2013). Here LR was used to predict whether or not 𝑣𝑣(𝑗𝑗0, 𝑖𝑖0) was ≥ a threshold 
value 𝑣𝑣∗. LR models yield the odds ratio of probability 0 ≤ 𝜋𝜋 ≤1 for 𝑦𝑦=1 as 

 ln �
𝜋𝜋

1 − 𝜋𝜋
� = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖

𝑁𝑁𝑣𝑣

𝑖𝑖=1

= 𝜷𝜷 ∙ 𝑿𝑿 (2) 

where 𝑋𝑋 is a set of 𝑁𝑁𝑣𝑣  independent variables (alternatively called covariates or predictors), 𝜷𝜷 is a vector 
of coefficients in this case determined by maximum likelihood. Inverting (2) yields the probability 

 𝜋𝜋(𝑦𝑦 = 1|𝑿𝑿) =
exp(𝜷𝜷 ∙ 𝑿𝑿)

1 + exp(𝜷𝜷 ∙ 𝑿𝑿) (3) 

In practice, a set of data 𝒟𝒟 = {𝑿𝑿,𝑦𝑦} of index 𝑘𝑘 = 1,…,𝑛𝑛, is divided according to the value of 𝑦𝑦 into two 
sets of size 𝑛𝑛0 and 𝑛𝑛1, respectively. The 𝜷𝜷 are then determined, usually by maximizing the log-likelihood 
function  

 arg max
𝛽𝛽

�[𝑦𝑦𝑖𝑖 log  𝜋𝜋𝑖𝑖 + (1 − 𝑦𝑦𝑖𝑖) (1 − log  𝜋𝜋𝑖𝑖)]
𝑘𝑘

𝑖𝑖=1

  (4) 

where the 𝜋𝜋𝑖𝑖 carry the 𝜷𝜷-dependence. A common issue that must often be addressed is unbalanced data, 
when 𝑛𝑛0 ≫ 𝑛𝑛1, or the reverse, which can bias (4), resulting in poor estimates of the coefficients and 
degrade the fidelity of the model. See King and Zeng (2001) and Salas-Eljatib et al. (2018) for additional 
details. A similar issue arises when 𝒟𝒟 contains clusters around one or more points in the data space 
(Merlo et al., 2006). Defining a subset of 𝒟𝒟 using random subsampling is often employed in the case of 
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unbalanced data, whereas Tomek Link, Synthetic Minority Oversampling, and Neighborhood Cleaning 
are common solutions to clustered data (Elhassan and Aljurf, 2016; Guo and Wei, 2019). Here random 
subsampling was used to address the data imbalance as there was little clustering. 
 
The result of LR (3) is a real value on the domain [0,1]. A threshold probability value is typically defined 
such that if 𝜋𝜋 < 𝜋𝜋0 then 𝑦𝑦 is considered to equal 0, and 𝑦𝑦=1 when 𝜋𝜋 ≥ 𝜋𝜋0. The most common selection 
for this threshold is 𝜋𝜋0=0.5, for which rates of True Positive (TPR), False Positive (FPR), True Negative 
(TNR), and False Negative (FNR) were calculated for differing 𝑣𝑣∗. In this study 𝜋𝜋0 was also allowed to 
vary, and the resulting changes in the TPR, and the FPR classifications were used to construct Receiver 
Operating Characteristic (ROC) curves, defined as TPR vs. FPR, and the Area Under Curve (AUC) 
measures of the ROC (Fawcett, 2006; Huang and Ling, 2005).  
 
4. High-Current Prediction Model 

 
4.1 Model Testing 

Several speed thresholds 𝑣𝑣∗ = �̅�𝑣 + 𝑧𝑧𝜎𝜎, were used, where 𝜎𝜎 is the standard deviation of 𝑣𝑣(𝑗𝑗0, 𝑖𝑖0), 𝑧𝑧 is a real 
number, and the mean meridional speed �̅�𝑣(𝑗𝑗0, 𝑖𝑖0) is adjacent to the port. The choices for 𝑧𝑧 were 0, 0.5, 1.0, 
1.5, and 2.0. For larger 𝑧𝑧 the data became unbalanced. That is, the ratio of the number of values in the 
above threshold set was much smaller than the below threshold set. To eliminate this effect the larger of 
the two sets were randomly subsampled (without replacement) so that each set had the same number of 
points. The LR was then calculated. Rebalancing consistently yielded 𝑝𝑝<0.05. Subsampling of the 
original data was repeated 100 times, which was sufficient for the mean coefficient values to converge.  

To test for overfitting, when the model hindcasts the training data but does not perform well for other 
data, a limited version of 𝑘𝑘-order cross-validation was applied (Aly, 2020; Pala and Atici, 2019). For each 
𝑣𝑣∗, the indices corresponding to above and below threshold were divided as above. The two data sets 
were divided into 𝑘𝑘=5 sections of equal length, and each subsection was sequentially removed and the 
remaining data randomly subsampled to create sets of equal number. The average of the regression 
coefficients were then compared to those obtained regression on all the data. In all cases, the relative 
differences between the 𝑘𝑘-average and the full-data coefficients was < 2%, indicating there is little to no 
overfitting in the model. 

4.2. Model Fidelity 

The TPR, FPR, TNR, and FNR for 𝜋𝜋0=0.5 were computed for each 𝑧𝑧 with lags of 12, 24, and 48 hr 
(Table 1). This report focuses on results for the first two prediction windows. Predictors were frontal 
position alone, and frontal position in combination with wind, for a total of 20 different cases. For cases 
only based on frontal position, the TPR increased with 𝑧𝑧, more than doubling from 𝑧𝑧 = 0 to 𝑧𝑧 = 2, 
reaching about 90% for both the 12- and 24-hr forecasts (Table 1). In complement, the FNR decreased by 
a factor of almost 10, reaching a minimum < 10% for both lags. The FPR and TNR were essentially 
independent of 𝑧𝑧, being around 30% and 70% respectively. The inclusion of wind as a predictor produced 
a decrease in the TPR, but increased the TNR by about 10% for 𝑧𝑧 = 2 for both lags. Wind also doubled 
the TPR for smaller 𝑧𝑧.  

The ROC provided insights into the model response with the full range of 𝜋𝜋0 (Figure 5). ROC curves in 
proximity to the upper-left corner of the domain (high TPR, low FPR) are considered to have high 
fidelity. Values of AUC range from 0 to 1, with the higher values generally considered an indication of an 
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accurate classification scheme. An AUC value of 0.5 indicates even probability of TP and FP, essentially 
random classification.  

Cases with small 𝑧𝑧 and no wind were close to the diagonal (random) with 0.6>AUC >0.5. Higher 𝑧𝑧 had 
higher AUC, peaking over 0.8 for both lags. Adding wind to the predictor set had the largest impact on 
low 𝑧𝑧 cases, with AUC now ~0.7, a nominal increase of about 20%. In contrast, the AUC for 𝑧𝑧=2 
increased by ~7%. 

Table 1. Confusion matrices for 𝑣𝑣 ≥ 𝑣𝑣∗ =�̅�𝑣 + 𝑧𝑧𝜎𝜎, using lagged frontal position south of the port, and 
lagged position and meridional winds, as indicated. 24-hr and 12-hr lags are examined. 𝜋𝜋0=0.5. 

 
Format 

TPR FPR 
FNR TNR 

 Lagged Front Lagged Front+Wind 
𝒛𝒛 24-hr 12-hr 24-hr 12-hr 

0 
35.7 32.8 39.6 29.7 69.3 38.3 68.7 36.2 
64.3 67.2 60.4 70.3 30.7 61.7 31.3 63.8 

0.5 
38.0 32.7 42.5 31.7 68.4 39.1 67.4 37.4 
62. 67.3 57.5 68.3 31.6 60.9 32.6 62.6 

1.0 
50.1 32.1 55.4 32.2 68.8 33.6 70.4 32.7 
49.8 67.9 44.6 67.8 31.2 66.4 29.6 67.3 

1.5 
67.1 33.0 74.7 33.5 73.9 29.4 81.5 29.1 
32.9 66.0 25.3 66.5 26.1 70.6 18.5 70.9 

2 
92.1 33.8 93.7 34.6 88.9 21.5 85.7 23.9 
7.9 66.2 6.3 65.4 11.1 78.5 14.3 76.1 

 

These results demonstrate that meander propagation was the primary mechanism by which high currents 
occurred near Port Miami, but the inclusion of other factors, in this case wind, can sometimes be 
important. Machine learning is superior to correlative methods when considering occurrences above or 
below threshold. These results indicate a similar model based on observational data will be successful, but 
additional predictors may be needed as the model does not capture the full hydrodynamics near the port. 
Specifically, attention should be paid to the inclusion of tides, as represented by water levels from a 
nearby tidal station or the dominant tidal phase, in the next phase of this project. 
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Figure 4. ROC curves and AUC values for varying 𝑧𝑧 with a) 24-hr prediction using frontal position; c) 
12-hr prediction using frontal position only as a predictor; b) 24-hr prediction using frontal position and 
wind as predictors; d) 12-hr prediction using frontal position and wind as predictors 

 
 
5. Stakeholder engagement 
 
Consulted with NOAA/CO-OPS (Chris Diveglio, Maritime Services Program Manager) and 
NOAA/NWS (Pablo Santos, Meteorologist In Charge, National Weather Service Office-Miami; Darren 
Wright, National Marine Program Manager; Brian LaMarre, Meteorologist In Charge, National Weather 
Service Office-Tampa Bay) on data availability.  Contacted Laura DiBella, Executive Director, Florida 
Harbor Pilots Association, Capt. Sam Stephenson, Port Everglades Senior Harbor Pilot, and Capt. Jon 
Nitkin, Biscayne Pilots Association Senior Harbor Pilot, for status updates and input. 
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