Coastal Ocean Observing in the Straits of Florida using HF Radar
An Overview of Recent Work

Matthew R. Archer [marcher@rsmas.miami.edu]
Lynn K. Shay, Jorge Martinez-Pedraja and Benjamin Jaimes

1 INTRODUCTION

- The Florida Current is one of the fastest ocean currents in the world, connecting the Loop Current in the Gulf of Mexico to the Gulf Stream in the North Atlantic.
- At the large scale, this current system plays a key role in redistributing heat in the ocean, and can impact climate on a global scale.
- At the small scale offshore of Miami, the Florida Current influences both local ecosystems and maritime operations (e.g. search and rescue, tracking an oil spill).
- Since transient eddy events in coastal regions are not easily observed by traditional in-situ instruments or satellites, there is still uncertainty about the small-scale variability of the currents.

2 HF RADAR DATA

- Since 2003, VERA radars have been deployed in phased array mode along the southeast Florida coastline to collect remote measurements of ocean surface currents, waves and winds.
- Operating at frequencies of 12 and 16 MHz, the radars collect data at 20-min intervals with a typical range of 80-km, and 1.2 km resolution in the horizontal.
- Advantages of HF radar for ocean observing in the Straits of Florida include:
 1) High resolution in time and space
 2) Long-term monitoring of the same area
 3) Coverage over areas never before measured

3 ON THE WESTERN FRONT

- During the eddy passage, the vorticity field revealed a Rossby number that greatly exceeded unity, implying the flow field was governed by submesoscale dynamics.
- Strong horizontal current divergence near the core of the eddy was associated with anomalously cold water brought to the surface by upwelling, observed in MODIS SST satellite imagery.

4 ON THE EASTERN FRONT

- A transient, coherent signal in the near-inertial passband was identified for the first time. This energetic fluctuation can increase cross-shelf exchange of water properties across the continental shelf.
- The strongly sheared Florida Current partially masked the structure of the near-inertial oscillation, which manifested as a succession of clockwise-rotating eddies in the observed surface currents. The wave train was not evident when embedded in a laterally sheared northward background flow.
- The dominant frequency was shifted by 13% below f in the embedded bands.
- Near-inertial energy peaked in the negative vorticity trough of the Florida Current, including:
 1) Examination of how the flow field kinematics are significantly altered during the passage of a frontal eddy; and,
 2) Analysis of a near-inertial velocity signal in the anticyclonic shear zone that has not been previously addressed in the literature.

References

Acknowledgements

The authors gratefully acknowledge support by NOAA OOS supported South East Coastal Ocean Observing Regional Association (SECOORA) through grant NA15OCE4320051. We thank NOAA/NAERSI, who awarded the AWAC (acoustic wave and current profiler) to Mi. M. Archer through the NorthSEAS Student Equipment Grant. We are thankful for support from Josiah Brown, Claire McCaffrey and Johns Rabin. NODIS SST data was obtained from http://fuso.gfd.nwiki.gov.