Climate Change and Coral Reefs

• Many fisheries species are dependent on coral reefs as essential fish habitat (fewer are obligate to corals in the Atlantic)
• Long-term fisheries declines can be linked to declines in coral reef structure and coral reef food webs (e.g., groupers, spiny lobsters)
• Habitat forming coral are limited diversity – helps to (somewhat) simplify understanding EFH changes
Climate Change and Coral Reefs

- Temperature
 - Stress and mortality at temperatures 1°C above the annual monthly maximum mean (MMM) temperature
 - Bleaching threshold (BT)
 - Time and magnitude above the BT determine the impact of thermal stress (level of mortality/recovery)
Climate Change and Coral Reefs

• Temperature
 – Site-specific MMM temperatures drive site-specific bleaching thresholds
 – Warming may occur in all habitats
 – Decreases refuge habitats for corals and fish
Climate Change and Coral Reefs

- Temperature
 - High temperature events during in the annual thermal maximum are becoming more frequent and severe (e.g., 2005 northeastern Caribbean bleaching event)
Climate Change and Coral Reefs

• Turbidity and Sedimentation
 – Blockage of light and deposition of sediments
 – Shift in suitable habitats for coral reefs (Grady et al. 2013)

• Sea level rise
 – Increased shoreline erosion and coastal turbidity/sedimentation
 – Upward shift in suitable habitat at limits of depth range
Climate Change and Coral Reefs

• Currents and reproduction (mass spawning broadcasters versus brooders)
 – Broadcast spawning
 • species are often restricted to spawning and sea surface fertilization a few nights of the year during the annual thermal maximum SST’s
 • Creates a narrow window of potential vulnerability (temperature stress on larvae and adults, hurricanes)
 – Brooders
 • Typically more flexible spawning and larval release times, less sensitivity to climate change
Climate Change and HABs

- Benthic Harmful Algal Blooms
 - Ciguatera Fish Poisoning (CFP)
 - Linked to a benthic dinoflagellate (*Gambierdiscus* spp.)
 - *Gambierdiscus* has optimal temperatures, with some species liking it hot and others not
 - Unknown if toxic species respond favorably to a warming ocean
 - Epidemiological – no increase in CFP in St. Thomas between 1980’s and 2012 (Radke et al. 2013)
 - Shift of *Gambierdiscus*/Ciguatera Fish Poisoning to higher latitudes (Kibler et al. 2015)
Climate Change and HABs

• Benthic Harmful Algal Blooms
 – Macroalgae on coral reefs
 • Increasing in abundance with eutrophication, natural and human-caused reductions in herbivores, and temp./chemistry associated with climate change
 • Increased negative interactions with corals and a phase shift to increasing macroalgae