

1. Introduction

The U.S. Integrated Ocean Observing System (IOOS) is a nationwide effort to provide access to a wide variety of coastal oceanographic and environmental data. The Southeast Coast Ocean Observing Regional System (SECOORA) was established in 2007 by a consortium of partner agencies and research institutions and serves as the regional association for integrating coastal and ocean observing activities in the southeastern Atlantic and eastern Gulf of Mexico. SECOORA is one of 11 regional associations (RAs) acting as Regional Information Coordination Entities (RICEs) under the authority of the Integrated Coastal and Ocean Observation System Act of 2009 (ICOOS Act).

As a member of IOOS, SECOORA has a mandate to collect, organize, and provide access to regional oceanographic data. These data need to be QA/QC'd, easily understandable, electronically accessible, and well organized to allow researchers, policy makers, industry, and the general public to make well-informed decisions. To satisfy this mandate, SECOORA supports a web-based data portal for the entire region providing ocean, coastal, and relevant interior environmental data and information products.

Typical data management activities for oceanographic information occur in isolated, physically distributed agencies, leading to low cross-agency utilization of data. Technical barriers, complex data formats, a lack of standardization, and missing metadata have limited the access to data in the past and made utilizing available scientific information a cumbersome and daunting task. As a consequence, existing data are often underutilized and typically have not undergone quality assurance.

SECOORA is implementing recommended and standard practices as defined by the U.S. Integrated Ocean Observing System (IOOS) Data Management and Communications (DMAC) committee. This will that ensure data collected by SECOORA and member entities is distributed on the SECOORA web portal and are managed according to best practices identified by NOAA/US IOOS. This also ensures that appropriate metadata and QA/QC practices are followed and that the data are of a known quality to the end user. These practices apply to data standards, metadata and data, transport and access, archival, information technology (IT) security, quality control and quality assurance, described in the NOAA IOOS Program Office DMAC White Paper (v1.0), and data management and communications <u>DMAC requirements for</u> IOOS Regional Associations and other IOOS grant recipients who are providing data to IOOS).

The SECOORA Data Management and Communications System (referred to hereafter as the SECOORA DMAC System) must adhere to these practices, and the SECOORA DMAC System Plan provides the approach to the necessary implementation, describing how data are ingested, managed and distributed from the source to public dissemination. The SECOORA DMAC System Plan is organized as follows:

• Section 2 provides an overview of the SECOORA Data Management and Communications, describing: the function, goals, and objectives of the SECOORA DMAC

System management; the data management structure; and, details related to the SECOORA data management team.

- Section 3 briefly describes the SECOORA data resources, defines data categories and asset types, and describes how the data categories are handled in the plan.
- Section 4 presents the SECOORA DMAC System statement of work and includes descriptions of the system computing infrastructure including details about the processes related to data ingestion, standards for format and content, metadata and data discovery, quality control procedures (including procedures for data that cannot undergo quality control) and flagging protocols. Additionally, this section covers policies for stewardship, public access and dissemination, data archival and preservation, and data system performance and security measures.

This document, unless superseded, pertains to a period of five years from June 1, 2016 through December 2021.

2. SECOORA DMAC System

The mission of SECOORA DMAC System, is to acquire, archive and share coastal and marine data and information products to meet the needs of SECOORA stakeholders and the national US IOOS program. SECOORA uses a data management system that allows a complex array of oceanographic and environmental data types to be well organized, discoverable, accessible, and understandable. The SECOORA DMAC System employs a distributed data management approach, which allows data to seamlessly interchange between participating agencies. The system is composed of an internal master node coupled with external data provider nodes. External data providers include stakeholders, partners and SECOORA funded projects who produce, and manage and share data. This distributed configuration increases capacity and technical knowledge within individual groups, allowing them to better meet their own internal data management goals. The distributed architecture leverages hardware, bandwidth, and staff resources across multiple systems and groups. Utilization of currently available external data feeds for sensor, remote sensing, and other data sources improves access to data for SECOORA users with minimal effort.

Integrating available interoperable data feeds into data access applications and data management systems adds a variety of resources at a low cost. Large quantities of real-time and historical sensor information, remote sensing satellite information, and marine habitat and biological data for the SECOORA region are openly available for use through interoperability protocols. For example, NASA Earth Observations (NEO) provides an expansive array of long term oceanographic, climate, and atmospheric remote sensing datasets. Real-time and historical sensor data feeds for the SECOORA region are available for hundreds of sensors via the National Data Buoy Center (NDBC), the Center for Operational Oceanographic Products and Services (CO-OPS), National Estuarine Research Reserve System (NERRS) and other NOAA programs. Additional sources of interoperable data include those hosted at NASA's Jet

Propulsion Laboratory (JPL), U.S. Geological Survey (USGS) TerraServer, and other research organizations. SECOORA integrates all of these data and make them available on the <u>SECOORA</u> <u>data portal</u>.

DMAC System Management Goals and Objectives

The SECOORA Deputy Director for RCOOS and DMAC Operations and Axiom Data Science, LLC (referred to hereafter as Axiom) comprise the DMAC System Management team and are tasked with fulfilling the primary goals and objectives within the SECOORA Data Management Work Plan.

Goal 1: Provide Core Data Management Support to the SECOORA Program

- 1. Provide Technical Support for SECOORA cyberinfrastructure.
- 2. Data Portal Migration, Development and Upgrade.
- 3. Deliver real-time, delayed-mode and historical data for in-situ and remotely-sensed physical, chemical and biological observations.
- 4. Deliver model-generated outputs, including both nowcasts/forecasts and reanalysis, to SECOORA users.
- 5. Implement QARTOD QA/QC checks for SECOORA real-time data feeds.
- 6. Archive data at National Centers for Environmental Information (NCEI).
- 7. Provides system performance and security measures.

Goal 2: Provide DMAC support to the SECOORA program

- 1. Provide overall DMAC project management and oversight.
- 2. Participate in regional, state, national and international DMAC activities.
- 3. Engage with data providers to access, understand, and appropriately document data (metadata and QA/QC) that is ingested through the SECOORA infrastructure.
- 4. Participate in regional committees and teams (including teams as determined by the Executive Director, and the joint State-Federal Data Integration Initiative) in order to facilitate data integration and interoperability within the region.
- 5. Participate in national and cross-regional committees, workshops and teams in order to further the development of a coordinated approach to IOOS data management.
- 6. Work closely with the SECOORA office, other data management awardees if selected, and appropriate advisory committees to implement identified user products, tools and web interfaces; develop product requirements; and beta test and refine products in order to increase their utility.
- 7. Provide reports as requested.
- 8. Develop detailed work plans with measurable timelines, deliverables, and performance metrics; and assist with proposal development.

Goal 3: Web Portal Hosting and Support

1. Migrate, host, and maintain the SECOORA content website at http://secoora.org

- 2. Host and maintain the SECOORA data portal at http://portal.secoora.org
- 3. Provide access to the user interface and visualization tools, data products, data query and access tools, decision-support tools, agency project tracking systems and databases, as well as IOOS Registry tools
- 4. Work with SECOORA staff to update the website periodically, in order to improve clarity, ease of use, and the overall "look and feel."
- 5. Work with SECOORA staff, SECOORA PIs, and member organizations to update the data portal periodically, in order to improve access to data, ingest new data, develop new tools, improve clarity and ease of use, and the overall "look and feel."

DMAC System Management Structure

The SECOORA DMAC System Management Structure is comprised of the SECOORA Deputy Director, Axiom DMAC Technical Lead, Axiom DMAC Coordination Lead, Data Team, and Web Team. Both the Data Team and the Web Team are led by the Axiom DMAC Technical and Coordination Leads. The SECOORA Deputy Director is responsible for the RCOOS and DMAC Operations. The Deputy Director provides overall project management expertise and oversees all aspects of the DMAC System and data management reporting requirements. The Deputy Director reports to the SECOORA Executive Director.

The DMAC System Lead (Kyle Wilcox, Axiom) and the DMAC Coordination Lead (Stacey Buckelew) oversees the Axiom Data Team and Web Team staff, and the SECOORA DMAC

system. Additionally, the DMAC System Lead contributes to proposal development and general SECOORA data management reporting requirements. The DMAC System Lead is the main point of contact for all technical data-related questions and is an expert in managing large scale datasets related to the SECOORA mission. The DMAC System Lead submits quarterly reports to SECOORA Deputy Director for RCOOS and DMAC Operations and website services.

Data Team

The Data Team is comprised of staff from Axiom and they are involved with all aspects of the SECOORA data flow, including data ingestion, creation of metadata, conversion, discovery, maintenance of data feeds, storage, and any necessary archival services. Its primary goal is to gather and serve data important to SECOORA end users via standard services as recommended by the IOOC and the IOOS Program Office (e.g., OPENDAP, ERDDAP, THREDDS, SOS, etc). It is also tasked with managing and archiving any SECOORA-funded and non-funded data generated by oceanographic models, buoys, or other devices to enable generation of data products.

The Data Team is responsible for the design and deployment of a DMAC System to meet the needs of the SECOORA user-base. This system must provide the functional components required by IOOS RICE as described in this plan. The team offers comprehensive technical solutions to data management needs, underpinned by a scalable, open source system that uses existing and emerging software, high performance computer clusters, and interoperability services. This data management system provides an environment that increases the access and use of data by all user groups and allows data management staff to rapidly develop new capabilities and tools to meet emerging user needs.

The Data Team is dedicated to providing data management and informatics support for SECOORA, and provides development capabilities for map-based data portals, spatial planning tools, and data management frameworks which transfer and ingest data from external systems via interoperability protocols. The team ensures transparency and communication between client and contractor about design requirements and development progress, and continually researches and employs new technologies to extend the capabilities of digital information and computer analysis systems.

Web Team

The Web Team is involved with all aspects of the maintenance and upgrade of the SECOORA content website that includes implementation and maintenance of content management software and functionalities, linkages to the data portal, and other information products. Its primary goal is to implement functionalities that will ensure the SECOORA web site is user friendly and easy to navigate, and serves content and documents pertaining to SECOORA governance and constituents (Staff, Board, PIs, members and end users). The team will be responsible for archiving the content web site.

The DMAC system Lead (Kyle Wilcox, Axiom) oversees all aspects of the Web Team. The Axiom Web Team coordinates activities and tasks with SECOORA staff for content development and the Data Team when including new products and services. Additionally, the Web Team contributes to content development, website layout, and design. The Web Team submits quarterly web site analytics reports to the SECOORA staff.

See [[APPENDIX - A - DMACPersonnelResumes]]

3. SECOORA Data Resources and Asset Types

The SECOORA DMAC System provides data to the public from multiple sources including SECOORA-funded projects and data from numerous and diverse external federal and non-federal organizations.

Observational Data Types

The SECOORA data inventories include multiple types of data, including real-time data, near real-time data, and historical data. SECOORA defines each data type in a consistent manner with IOOS Guidelines as follows:

- *Real-time data* are ingested, served, and displayed by the SECOORA DMAC System at the same frequency the data are collected (and sometimes reported) by the originator with little to no delay. Real-time assets primarily include shore stations, HF Radar, gliders, oceanographic buoys and numerical model data.
- *Near real-time data* are ingested by the SECOORA DMAC System at the same frequency that the data are made available; however, there is some delay (hours to days) between data collection and when the data provider makes it available. Examples of near real-time assets include satellite images and derived satellite products.
- *Historical data* are data that are one month old or older. Historical data are sometimes collected in real-time and then archived, and sometimes ingested from local or national archives on request.

Data Categories

The SECOORA data types are divided into five major categories that determine the level of documentation and quality control (QC) that is required for the data assets within each category:

- 1. Federally Sourced Data
- 2. Model Products
- 3. Static Data Products
- 4. Funded Data Streams
- 5. Regional Partners Data Streams (not SECOORA funded)

Federally Sourced Data

Federally sourced data incorporated into the SECOORA data portal are quality controlled following rigid data management and archival processes by the federal agency collecting the data. These data only require generic documentation by SECOORA on how these data are ingested and made available to the public (Section 4). As of the writing of this plan, federally sourced data served by the SECOORA DMAC System are all exempt from detailed data stream documentation. Federal sources include the National Oceanographic and Atmospheric Administration (NOAA), the U.S. Geological Survey (USGS), the U.S. Forest Service (USFS), the Federal Aviation Administration (FAA), the National Science Foundation (NSF), Department of Agriculture, and U.S. Fish and Wildlife Service (USFWS). See the *[[APPENDIX - B - FederalSourcedDataInventory]]* for a complete list.

Model Data Products

Model outputs and products served by the SECOORA DMAC System may incorporate or assimilate observational data (e.g., salinity from North Carolina State University (NCSU) Coupled Northwest Atlantic Prediction System (CNAPS)). These models are considered a product that falls outside the realm of "true" observations therefore they are exempt from detailed data stream documentation. See the *[[APPENDIX - C - ModelDataProductsInventory]]* for a complete list.

<u>Static Data Products</u>

SECOORA static data products are typically derived from observed data, but are displayed in a way that the original data are no longer reproducible and cannot be used to assemble a numerical observational dataset in time or space. Other types of static data products are merely representations of fixed political or legal boundary information. These products fall outside the realm of "true" observations, therefore are exempt from detailed data stream documentation. See the *[[APPENDIX - D - StaticDataProductsInventory]]* for a complete list.

Funded Data Streams

Data funded by SECOORA fall into their own category. The primary processes involved with data management include data ingestion, standards and format, metadata and discovery, quality control, stewardship and preservation, access and dissemination, archival and security. Descriptions of the processes that consistently apply to all data streams are provided in Section 4. Additional data management documentation unique to individual data streams are provided through a systematic Data Stream Plan template that closely follows the RICE Certification Guidance DMAC requirements (section (1-6)) and the NOAA Data Sharing Template. Use of this custom Regional Data Stream Plan template facilitates consistent documentation, and streamlines future additions and edits to existing data stream protocol.

The Data Stream Plans use a consistent and comprehensive template designed to describe how data streams with similar procedural controls are handled and managed end to end. Grouped parameters may originate from a single platform type (e.g., a mooring that provide temperature, salinity, and dissolved oxygen data, all of which are treated in a standard way); a data type that is handled similarly across all platforms (e.g., webcam imagery); or originate

from a single data source (e.g., University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (COMPS)).

Quality Control descriptions included in the Data Stream Plans may follow one of four paths for a given data stream:

- 1. Follows prescribed QARTOD guidelines (required for real-time data only if a QARTOD Manual exists for the parameters in the data stream).
- 2. When QARTOD guidelines do not exist, some other suitable form of QC implementation is conducted and described;
- 3. A description of the QC completed by the data provider (e.g., brief description or link to QC protocols performed at the source).
- 4. Data are considered exempt from QC documentation or requirements if federally sourced.

See the **[[APPENDIX - E - FundedDataStreamsInventory]]** for a complete list including links to individual Data Stream Plans.

<u>Regional Data Streams</u>

Regional Data Streams are defined here as any data resource that does not fit into the exempt categories already discussed: federally sourced data, model product, and static data product and are not funded by SECORRA. These include, for example, regional data provided by local or state agencies, private companies supporting maritime activities in coastal waters, university projects, and research studies funded and conducted by local entities. None of these data streams served by the SECOORA DMAC System originate directly from SECOORA funding. Most regional data originate from sole source providers affiliated with other entities (research, private, NGO, etc.). Occasionally, a federally sourced data asset is manipulated in some fashion prior to display and, therefore, requires documentation (e.g., federal satellite data that is transformed from a NSIDC-binary format into netCDF). Data streams may be of any data type: real-time, near real-time, historical, citizen science. Leveraged projects in which SECOORA helps support but does not fund may also fit into this category. Due to the external nature of these data streams they are usually exempt from detailed data stream documentation. On occasion, however, a data stream that would normally be considered exempt will require documentation in a Data Stream Plan:

- Data products that include representations that can be used to reproduce numerical data in time or space are considered observing data, are treated as a Regional Data Stream and are further documented in a Data Stream Plan.
- A federal data source that is translated or transformed in some way between the source at ingestion to the SECOORA access point of delivery (e.g., smoothing, block averaging).

See the [[APPENDIX - F - RegionalDataStreamsInventory]] for a complete list.

4. SECOORA DMAC System Architecture and Work Plan

Axiom Data Science has developed a framework for managing a variety of ocean data types (*in-situ* and remotely sensed data streams, multidimensional grids, GIS, and other structured

formats). This framework exposes managed data through interoperability systems and uses several user interface tools that allow the data to be discovered and explored by the broader community. Use of this framework to power the SECOORA DMAC system will enable the SECOORA data team to rapidly ingest or connect to data sources relevant to SECOORA and develop advanced user tools and data products efficiently.

The SECOORA data system is divided into four logical tiers, which separate the suite of technologies composing the system. See Figure 1 for a diagram of the system.

Figure 1. SECOORA DMAC system framework showing the flow of data through logical technology tiers, enabling discovery of data that enables understanding the ocean and coastal environments.

SECOORA partners' data, models, and metadata are ingested autonomously into the back-end data system through a series of harvesting mechanisms written in Java, Scala, and Python that make use of lower-level interfaces (e.g., FTP, HTML and ad hoc service APIs). Data files are processed during the ingestion process and loaded into a clustered file storage and database system (GlusterFS and Postgres). A suite of interoperable systems connect to the data storage, including ncSOS, 52 North SOS, GeoServer, THREDDS, ERDDAP and ncWMS, and they expose data feeds through SOS, WFS, WCS, WMS and OPeNDAP protocols. The SECOORA asset catalog is a database containing ontological information describing the dimensional characteristics (space, time, unit, measured parameter and taxonomy) of each known data resource and how these characteristics relate to each other across data sets. References to both internally- and

externally-hosted data feeds are stored in the ontological database and provide the user with a harmonized set of interfaces for consistent access to data and visualizations. Sensors, numerical model output, and remotely sensed observational grids are mapped to common characteristics (space, time, and climate forecast parameter) for comparison across sources. Data sets are further mapped across keywords and, if applicable, Integrated Taxonomic Information System (ITIS) records. The asset catalog also exposes web services providing external access to metadata in the database and provides a method for indexing metadata across multiple formats and types using ElasticSearch, a scalable, Apache Lucene based, clustered search engine. The underlying system architecture works together to allow users to rapidly discover, access and use data through web-based applications and tools developed using modern web development languages and libraries.

Data Ingestion

Observations and information are ingested into the SECOORA Data System from a variety of sources, including both historical and real-time observations, forecast, nowcast, and hindcast model outputs, GIS information, and synthesized products that can be useful for layering with other data in the SECOORA DMAC System. Each data asset ingested into the DMAC System has its own level of data processing maturity and quality with respect to the metadata available.

Data has the ability to be ingested into the SECOORA system using one of several pathways:

- 1. Contribution by the originator
- 2. Direct access or harvest from the originator website (real-time sensors)
- 3. Auto submission pathway from the Workspace

SECOORA -funded partners provide data to SECOORA in a timely manner, stipulated in the US IOOS descope proposal. When possible, data are served in real-time. In cases where projects do not produce real-time data, the project PIs are responsible for making sure data become accessible by SECOORA as soon as possible.

Standards for Format and Content

Shared Data File Formats

SECOORA provides nearly all data in four open and standardized forms:

- 1. *Network Common Data Form (NetCDF)* a self-describing, machine-independent data format that SECOORA uses primarily for raster (gridded) data. Some data stored as unstructured grids use this format as well.
- Comma Separated Values (CSV) a human-readable ASCII format that is nearly universally accepted by spreadsheet and programming languages. SECOORA uses CSV formats to allow users to download: (1) time-series extractions from raster data, and (2) GIS vector and polygon information (e.g., boundaries).

- 3. *Shapefile* an open geographic information system format for point, vector, and polygon data. SECOORA allows users to download shapefiles of static GIS layers such as boundaries, biologic distributions, etc.
- 4. *Portable Network Graphics (PNG)* PNG is a lossless image format provided as an alternative to shapefiles in the SECOORA catalog. PNGs are limited in use as they are pre-projected, pre-scaled, and pre-sized images of data layers. SECOORA provides PNG files as example WMS requests, which are useful to users who cannot access GIS services and who do not understand how to manipulate WMS requests.

Data Access Points

Access points provide standardized, documented services that allow users to download data from SECOORA without having to make person-to-person data requests. SECOORA offers six access points:

- Thematic Realtime Environmental Distributed Data Services (THREDDS) THREDDS is a set of services that allows for machine and human access to raster data stored in NetCDF formats. THREDDS provides spatial, vertical, and temporal subsetting as well as the ability to select individual dimension or data variables to reduce file transfer sizes. SECOORA provides THREDDS access points for raster (gridded) data and discrete time-series observations stored in NetCDF format.
- 2. Open-source Project for a Network Data Access Protocol (OPeNDAP) OPeNDAP is a protocol that can transfer binary or ASCII data over the web. Like THREDDS, it provides spatial, vertical, and temporal subsetting and the ability to select individual variables to reduce file transfer sizes. Unlike THREDDS, requested data are provided as non-NetCDF, structured output. OPeNDAP output can be imported directly into graphical programs such as GrADS, Ferret, or R. SECOORA provides OPeNDAP access points for raster and time-series data.
- 3. Web Map Service (WMS) WMS provides machine access to images, which can be used by individuals or programs (e.g., tiling services). Accessing programs use GetCapabilities requests to ask for image data in whatever format they require, which allows them to gather image tiles over specific areas with the projections, styles, scales and formats (PNG, JPG, etc.) that fits their needs. SECOORA provides WMS access points for point, vector, and polygon information, as well raster data.
- 4. Web Feature Service (WFS) this service provides machine access to the vector elements of static layers. SECOORA provides WFS access points for point, vector, and polygon information, as well as time-series and raster data.
- Environmental Research Division's Data Access Program (ERDDAP) ERDDAP is a common data server that provides access to subsetting and downloading data.
 SECOORA provides ERDDAP access to all time-series data in the region, a subset of gridded data, and some GIS-data based products.
- 6. File Downloads SECOORA often provides data as downloadable files. These files are mostly served in the standard shared data file formats above, or in the case of project-specific data, in their native file formats.

The flow of data from the source to SECOORA data portals follows the same general path for all

sources as illustrated in the following flow diagram (Figure 2). For cases where the data are transformed or modified in any way, an explanation is provided in the individual Regional Data Stream Plan for that particular instance. This includes format translations or aggregations of component data streams into an integrated product.

Though SECOORA relies on local investigators to provide best practices for QA on their activities related to data submitted to SECOORA, part of the data ingestion process is to establish adequate metadata and provide metadata links that provide the necessary background information to establish the purpose of the data and expected quality.

Figure 2. Flow diagram of data: From data, source, model, and GIS providers to users, archives, and external DACs.

Metadata and Data Discovery

SECOORA requires standards-compliant metadata for project-level data (SECOORA or IOOS-funded projects). Though SECOORA does not require specific metadata standards for ingesting other types of data, most modern data submittals are accompanied by standard ISO/FGDC metadata records. However, many older data sets come with informal metadata

documentation that is variable in terms of completion and detail required by modern standards, and some are only accompanied with narrative information. In these cases, SECOORA works towards making the source information easily accessible to the end-user by providing links to source data or data providers, and making all available metadata information that came with the data available in the <u>SECOORA data catalog</u>. Details and availability of metadata are discussed in individual Data Stream Plans.

Quality Control Procedures

A primary mission of SECOORA is to serve as a regional data assembly center (DAC), aggregating data from local and federal sources and making them available, accessible, and understandable to the public. Quality Assurance are procedures undertaken during the experiment and/or instrument design phases of data collection, ensuring that all the data collected are as accurate and precise as possible. Providing very few data collection devices itself, SECOORA is reliant on individual data providers to provide adequate QA procedures, and they will not be discussed in this document.

Quality control (QC) processes implemented by SECOORA are used to identify and flag or remove bad data after data collection. Sharing these protocols and quality flags are an important component of publicly serving data.

SECOORA Implemented QC Protocols

SECOORA does not receive or serve any raw data transmitted directly from stations, so any applied QC procedures administered by SECOORA are in addition to those applied by the data provider. For many project-based and historical datasets, SECOORA provides the same data (though sometimes in converted formats) that are available from the source provider, which in many cases is a requirement stipulated by local providers. Any QC procedures that are documented and made available to SECOORA by the providers are included in the QC section of the individual Data Stream Plans.

SECOORA currently applies two standard QC procedures to real-time and historical observation data before it is stored in the SECOORA Data System. These tests include the following:

- 1. *Syntax Test:* each regional data source uses unique syntax to transfer data. Some (e.g., University of North Carolina Wilmington (UNCW) Coastal Ocean Research and Monitoring Program (CORMP) Program) have standardized data storage protocols and provide services whereas others (e.g., USF COMPS) are combination of database and html web pages that are scraped for data. Therefore, each regional source requires a custom syntax test, which merely checks for parity errors by testing if data can be extracted from the downloaded or scraped data. If no data can be extracted, the test fails.
- 2. *Gross Range Test:* this test checks data values against minimum and maximum values defined for each parameter. In addition to parameters outlined in QARTOD manuals, SECOORA includes gross range tests for parameters not covered by QARTOD. Values

outside of the prescribed parameter ranges are rejected and replaced with missing value flags in data storage connected to access points and the graphic displays. See the *[[APPENDIX - G - GrossRangeTestTable]]* for the current values used in Gross Range tests.

SECOORA also implements a type of *"time-gap check"* that informs observational assets (e.g., weather stations) displayed on its "Real-Time Sensor Map". If no data are received from an existing observational station for four hours, the icon on the map changes from a scaled color to a small grey dot. If no data are received from an existing observational station for one week, the asset is automatically removed from the map, but assets are still made available on a historical sensor map. This *"time-gap check"* does not flag data or gaps in the underlying SECOORA data storage, thus is not considered adequate to satisfy the time-gap test proposed by QARTOD.

SECOORA Planned QC Protocols

SECOORA is in the process of implementing policies outlined in the US IOOS Quality Assurance of Real-Time Oceanographic Data (QARTOD) manuals. As new data are invited into the SECOORA DMAC System, they will be assessed and classified accordingly, to allow for full documentation as described in this plan, including Data Stream Plans for new assets that do not come from federal sources and that will be archived by SECOORA. As new QARTOD protocols are updated and new parameter manuals developed over time, Data Stream Plans will be updated accordingly to include newly required QARTOD implementations. When QARTOD guidelines do not exist for a variable, other suitable form of QC implementation is conducted and described. QARTOD procedures will be implemented in phases to existing and applicable SECOORA assets by December 31, 2017.

Implementation of QARTOD tests by SECOORA will have different processes depending on the data type -- real-time data, historical data, citizen data, and federal data.

Real-time data

SECOORA DMAC system will ensure that quality control (QC) standards are implemented and QC flags made available for all real-time data that are not received from a federal source. SECOORA currently serves various non-federal data streams that require QARTOD QC tests implementations. Currently, Real-time observations ingested by SECOORA DMAC system have a minimal SECOORA QC tests applied (syntax test, gross range test, time-gap check). No QC flags are associated with these data. SECOORA funded data providers (e.g., UNCW CORMP, USF COMPS and USF HF Radar) have started to implement and document the implementation of QARTOD recommended QC tests performed for their data. The University of Georgia maintained Ocean Acidification sensors on NOAA National Data Buoy Center mooring is a part of the US National Ocean Acidification program, and NOAA Pacific Marine Environmental Lab (PMEL) reviews the data and does quality control measures prior to releasing the data to the public. In these cases, links to these procedures, or a brief summary of the QC performed is provided in the organization's individual Data Stream Plans See the *[[APPENDIX - E - Funded*]

Datastreams]]. The NWS, NERRS, the IOOS HFR DAC, and the IOOS Glider DAC all ingest and perform extensive QC on the raw data collected by these platforms prior to making them available to the public. SECOORA ingests these data from these programs for display in the DMAC System, and are not required to perform additional QC on these assets. Required QARTOD tests on non-federal real-time data (either by SECOORA data providers or at the SECOORA DAC) will be implemented in phases and will be completed by December 31, 2017.

Historical Data

SECOORA currently applies two standard QC procedures to historical time series sensor data ingested through the DMAC System. When possible, SECOORA provides documentation of QC on historical data, including QC procedures that are implemented by the data provider, in addition to any additional processing or QC that occurs after data ingestion but prior to data dissemination via the SECOORA Data System. When QARTOD applies, data assets that were previously reporting real-time data and that have had their historical data stored and made available in the SECOORA Data System, will follow the same QC protocols as the real-time data (e.g., King Island Wave Buoy; non-federal weather data). Data with QC flags will become available in the data portal as QARTOD and other QC protocols are fully implemented by December 31, 2017.

Stewardship and Preservation

SECOORA stores ingested data in a secure, professionally managed external facility. SECOORA currently has total storage space for over 1.8 petabytes of data, and those resources are backed up to Amazon Glacier, a cold storage backup and archival service offered by Amazon Web Services.

SECOORA stores all aggregated data, be it real-time sensors, forecasts results, static GIS layers, etc., indefinitely beyond the life of each individual project. This means that real-time sensor feeds will become historical sensor feeds one-month after collection, and it allows SECOORA to grant users rapid web-based access to all sensor data (federal and nonfederal) since SECOORA began aggregating feeds. The only assets that are not kept indefinitely in storage are webcam images, NEERS data (as it is strictly prohibited in their terms of service), and forecast products that have been replaced with a more accurate forecast.

Providing Public Access and Dissemination

All data served on the SECOORA DMAC System are fully available to the public and have no data restrictions or embargo periods placed on them. New datasets from either new or current data providers received by SECOORA are immediately available to the public after data ingestion and documentation is complete; however, they are not added to the searchable data catalog. Datasets are added to the searchable, public catalog only after the data provider is brought into

a feedback loop to comment on the metadata, usage notes and citation information regarding their dataset. Once published in the catalog, products are promoted via the SECOORA website, social media accounts, outreach campaigns, and an email newsletter.

The SECOORA DMAC System provides a variety of environmental and socioeconomic data resources in a one stop data portal, free to the public, with data originating from SECOORA funded data providers, federal and state agencies, local municipalities, academic institutions, research organizations, private companies, non-profit organizations, and community observers. Any data served by SECOORA data portals carries with it the permission to view and access, and carries no privacy or ethical restrictions. Data access is defined here as being permitted to download data through the SECOORA data portal. Occasionally, a data sharing agreement between SECOORA and a data provider will identify the existence of intellectual property rights (IPR) to the data and this is noted in the applicable Data Stream plan. However, IPRs do not restrict access to any of the data that is freely served through SECOORA data portal. IPR information is provided out of courtesy for the data provider, and it is an unwritten expectation that as with all data used by someone other than the originator. It is a best practice to always clearly give credit to the data source (the originator) and data provider (in this case SECOORA) in any work or publications that emanate from using data accessed via the SECOORA data portals.

Data Archival

As a federally-funded program, SECOORA is required to submit data it generates to a national archive center. SECOORA has an active Submission agreement to archive data with the National Center for Environmental Information (NCEI) *[[APPENDIX - F - Current Archival Agreement]].* The agreement framework is being renegotiated with NCEI and is in the process of transferring that agreement to Axiom Data Team. SECOORA Deputy Director and the Axiom Data Team are working with the NCEI to assist with the transfer and preservation of appropriate data types. The SECOORA Data Team has worked and consulted with several NCEI staff members, including Matthew Biddle, John Relph, and James Partain, on automating the submission of SECOORA-funded data assets to the NCEI. Matthew Biddle will advise the SECOORA Data Team staff on the data submission forms and all necessary procedures. SECOORA submissions for long-term archive at NCEI are limited to funded in-situ data from a handful of regional observing networks. Archival process with NCEI will be completed by December 31, 2017. SECOORA's *Request To Archive* was approved by NCEI on 2017-02-16 and the new data submission agreement is being finalized now *[[APPENDIX - I - Request2Archive]].*

SECOORA also archives data through two national IOOS DACs: the IOOS HFRadar DAC and the IOOS Glider DAC. Both national DACs archive all of their data, including that submitted by SECOORA, with NCEI.

Performance and Security

The SECOORA Data Team operates a High Performance Computing (HPC) cluster located in Portland, Oregon. This HPC resources are composed of approximately 2500 processing cores staged in a series of interconnected blade arrays as well as 1.8 petabytes of storage. Compute nodes and storage nodes are connected over a low latency, converging network fabric (40 Gb/Sec Infiniband). GlusterFS is employed as a storage software abstraction layer that enables clients and storage servers to exploit data transfer over Remote Direct Memory Access (RDMA) protocols. This configuration enables data throughput from the storage cluster to the compute cluster to reach speeds greater than 160 Gb/Sec in high-concurrency situations. SECOORA also has a dedicated multi-braided 1 Gb/Sec high speed internet connection for large file transfers between external data centers and for high-bandwidth demands of centralized web based applications. The SECOORA Data Team provides the following enterprise-level infrastructure capabilities:

Security and Redundancy

The SECOORA Data Team's data center in Portland, OR implements several levels of redundancy and backup. Our main storage cluster is distributed over several layers of physical hardware and we make use of Amazon Glacier, a cold storage backup and archival service offered by Amazon Web Services, for long term archival and disaster recovery. Enterprise level firewalls and system monitoring software are also in place to provide hardened cyber security.

Capacity and Performance

High Performance Computing (HPC) has been a component of the SECOORA Data Team's technical strategy since early 2011. The SECOORA Data Team operates its own private "cloud" of compute and storage resources that data managers can provision to specific tasks and roles. The current number of processing cores and storage is scalable to allow additional resources to be added as necessary. SECOORA Data Team engineers have demonstrated that large GIS, model, and remote sensing datasets require HPC environments to be visualized and queried over web-based interfaces. Because HPC is achieved through load balancing and parallelization, these types of systems also provide the added bonus of high availability and redundancy.