Coastal 3-D High-Resolution Maps for Floods, Wetlands, and Biodiversity SECOORA 2020

Matthew McCarthy, Oak Ridge National Laboratory

Brita Jessen, Rookery Bay NERRFrank Muller-Karger, USFJill Schmid, Rookery Bay NERRTim Dixon, USFJessica McIntosh, Rookery Bay NERRJim Gibeaut, Texas A&MMarissa Figueroa, Rookery Bay NERRMel Rodgers, USFMike Barry, Tatenda, Inc.Tylar Murray, USF

Motivation

- Rapid coastal population growth
 - Texas and Florida > 1,000 new resident per day each
 - 50% of built environment needed exists today
- Sustainable development
- Improved and updated flood maps
- Compliment and improve NOAA C-CAP maps
- Evaluate first-order biodiversity

Project Overview

- Research Questions
 - What are the types and extent of different wetland and other land cover classes, their geomorphology, composition, and vulnerability at local and regional scales?
 - What is the relationship between topography and land cover across scales of meters?
 - Which areas are particularly prone to flooding across the region?
 - What are major changes observed in land cover pre- and postsevere storms and specifically Hurricanes Harvey, Irma and Michael?

Methodology: WorldView Imagery + Lidar

Coastal 3-D High-Resolution Mapping

NSF Hub Spoke Big Data Project \$1M USD 3 year timeline 20,000 WorldView Images Map land cover: coast-50 km inland

Objective: Large-scale mapping

Problem

Solution

Big Data processing efficiency

Automation issues

- Consistency
- Thresholding
- Sunglint
- Water column

Automation

Automation solutions

- Standardized preprocessing
- Scene-specific algorithms
- Novel deglinting algorithm
- Novel correction algorithm

#!/bin/bash

#SBATCH --partition=bgfsqdr #SBATCH --job-name ="SOALCHI_bgfs" #SBATCH --nodes=1 #SBATCH --ntasks-per-node=4 #SBATCH --mem-per-cpu=20480 #SBATCH --time=10:00:00 #SBATCH --array=0-10000 Pgc_ortho.py

- Written by Polar Geospatial Center
- Steps
 - Ingest Level-1B WorldView NITF
 - Optional georectification using RPCs
 - Project to WGS 1984 (EPSG:4326)
 - Output Level-2B GeoTIFF
- Run time = 5-15 minutes per image

- Written by M McCarthy
- Steps
 - Ingest Level-2B GeoTIFF + metadata XML
 - Convert DN to Radiance
 - Correct for Rayleigh scattering
 - Convert to Rrs
 - Decision Tree preparation
 - Decision Tree
 - Post-processing filter

- Written by M McCarthy
- Steps
 - Ingest Level-2B GeoTIFF + metadata XML
 - Convert DN to Radiance
 - Correct for Rayleigh scattering
 - Convert to Rrs
 - Decision Tree preparation
 - Upland vs Wetland
 - Scene-specific algorithm
 - Wetland < Average(sum(B3-B5))
 - Decision Tree
 - Post-processing filter

- Written by M McCarthy
- Steps
 - Ingest Level-2B GeoTIFF + metadata XML
 - Convert DN to Radiance
 - Correct for Rayleigh scattering
 - Convert to Rrs
 - Decision Tree preparation
 - Deglint
 - Isolate glint pixels from ODW (novel algorithm)
 - Dual-array of WorldView imagery
 - Regress visible bands against NIR for slope
 - $\operatorname{Rrs}_{dg,i} = \operatorname{Rrs}_{i} (\operatorname{Slope}_{i}^{*}(\operatorname{Rrs}_{\operatorname{NIR}} \operatorname{Rrs}_{\operatorname{NIRmin}}))$
 - Decision Tree
 - Post-processing filter

#!/bin/bash

#SBATCH	partition=bgfsqdr
#SBATCH	job-name ="SOALCHI_bgfs"
#SBATCH	nodes=1
#SBATCH	ntasks-per-node=4
#SBATCH	mem-per-cpu=20480
#SBATCH	time=10:00:00
#SBATCH	array=0-10000

- Written by M McCarthy
- Steps
 - Ingest Level-2B GeoTIFF + metadata XML
 - Convert DN to Radiance
 - Correct for Rayleigh scattering
 - Convert to Rrs
 - Decision Tree preparation
 - Estimate water column properties (Kd)
 - Calculate IOP index (Li 2019, Hu 2012)
 - Based on ODW
 - Estimate chlorophyll-a content (Hu 2012)
 - Decision Tree
 - Post-processing filter

#!/bin/bash

#SBATCH	partition=bgfsqdr
#SBATCH	job-name ="SOALCHI_bgfs
#SBATCH	nodes=1
#SBATCH	ntasks-per-node=4
#SBATCH	mem-per-cpu=20480
#SBATCH	time=10:00:00
#SBATCH	array=0-10000

- Written by M McCarthy
- Steps
 - Ingest Level-2B GeoTIFF + metadata XML
 - Convert DN to Radiance
 - Correct for Rayleigh scattering
 - Convert to Rrs
 - Decision Tree preparation
 - Decision Tree
 - Calculate bathymetry (from Kd)
 - Revised from Li 2019 with exponential scalars derived from WorldView field data tuning parameters
 - Post-processing filter

- Written by M McCarthy
- Steps
 - Ingest Level-2B GeoTIFF + metadata XML
 - Convert DN to Radiance
 - Correct for Rayleigh scattering
 - Convert to Rrs
 - Decision Tree preparation
 - Decision Tree
 - Post-processing filter

Methodology: Mosaicking

Mosaic

- Python
 - GDAL library
- Automated image-stitching

Examples

• Deglinting

Examples

• Deglinting

Examples

- Bathymetry mapping
 - Key West

Results: Texas

NOAA 2010

ہے ہے

Source: Earl, DigitalOlobe, GeoEye, Earlinstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Developed Bare/Soil Water Grass Algae flat Marsh Forested Wetland Forested Upland Scrub/shrub Agriculture

SOALCHI

NOAA 2010

Applications

- Sustainable Development
- Flood Hazards
 - Land cover + topography + SfM
- Machine Learning
 - Large training dataset

SOALCHI Method Validation

Purpose

- Map hurricane damage
- Compare pros and cons

<u>Algorithms</u>

- SOALCHI
- Support Vector Machine
- Neural Network

<u>Data</u>

- WorldView-2 (Nov 2018)

Training & Validation

• 714 field survey points

McCarthy et al. (2020) International Journal of Applied Earth Observations and Geoinformation

Results

<u>Producer's</u> <u>Accuracy</u>	Decision Tree	Support Vector Machine	Neural Network
Soil	97%	92%	92%
Damaged Mangrove	38%	62%	57%
Healthy Mangrove	63%	69%	75%
Upland Vegetation	91%	86%	88%
Water	100%	100%	100%
Overall Accuracy (Kappa)	83% (0.765)	83% (0.767)	85% (0.792)

Conclusions

	Pros	Cons
Decision Tree	Fastest Automated Best Upland vs Mangrove accuracy	Least accurate damaged mangrove
Support Vector Machine	Most accurate damaged mangrove	Manual training Slowest
Neural Network	Most accurate overall Most accurate healthy mangrove	Manual training

Natural-disaster monitoring

Objective: Hurricane-damage assessment

Background

Hurricane Irma September 2017

Category 3: 120 mph winds

Mangrove damage

- Damaged vs undamaged
- Dead vs recovered

Existing map: 2010 (2 years to create)

Management Need

- Identify location, extent, and timeframe of coastal wetland degradation
 - Determine chronic vs acute drivers
 - Help managers determine how to mitigate loss, understand recovery, and improve resiliency

Project Goals

- 1. Map land and aquatic habitats for years 2010, 2013, 2016, 2017, 2018
- 2. Detect change location and extent
- 3. Attribute changes
- 4. Share information with regional resource managers through facilitated meetings and mapping products

Data

- High-resolution WorldView-2 satellite imagery
- Medium-resolution Landsat satellite imagery
- LiDAR data: 2007
- Field surveys (M. Barry)

Methodology

Habitat Mapping with Satellites

NERRS Science Collaborative

Accuracy Assessment: Worldview Nov 2018

- Soil: 95%
- Degraded mangrove: 56%
- Healthy mangrove: 78%
- Upland: 68%
- Water: 100%
- Overall accuracy: 82%

WorldView

Landsat

WorldView

Landsat

WorldView

Landsat

Results: Irma Damage

Results: Recovery

Three months post Irma (WorldView)

Five months post Irma (WorldView)

Recovery

- Some mangrove rebound
- Some mangrove die-off

<u>Net Change:</u> <u>Pre-Irma to Recovery</u>

Mangrove to Marsh 7.1 km² ~1,750 acres

Mangrove to Bare Soil 1.6 km² ~395 acres

Total Mangrove Decline 10.6 km² ~2,600 acres

McCarthy et al. (2020) Remote Sensing

Mangrove Loss

Acute Drivers of Loss

Maerl overwash starving mangroves

- Radabaugh et al. 2019
 - 11% mortality 2-3 months post-Irma
 - 20% mortality 9 months post-Irma

Local Sea Level

Local Sea Level

Local Sea Level

Mangrove Recovery

Radabaugh et al. 2019 60% canopy cover 3 to 9 months post-Irma

Sunlight reaching seedlings

Next Steps

Complete Florida mapping

Conduct flood risk mapping

Disseminate results

- SECOORA
- Digital Coast

QUESTIONS? Contact: mccarthymj@ornl.gov

Funding Providers: NASA, NSF, NOAA, NERR Science Collaborative, NOAA 100S Data Providers:

DigitalGlobe and Polar Geospatial Center