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Motivation

• Rapid coastal population growth
• Texas and Florida > 1,000 new resident per day each

• 50% of built environment needed exists today

• Sustainable development

• Improved and updated flood maps

• Compliment and improve NOAA C-CAP maps

• Evaluate first-order biodiversity



Project Overview

•Research Questions
• What are the types and extent of different wetland and other land 

cover classes, their geomorphology, composition, and vulnerability 
at local and regional scales?

• What is the relationship between topography and land cover 
across scales of meters?

• Which areas are particularly prone to flooding across the region?

• What are major changes observed in land cover pre- and post-
severe storms and specifically Hurricanes Harvey, Irma and 
Michael?





Methodology: WorldView Imagery + Lidar



Coastal 3-D High-Resolution Mapping

NSF Hub Spoke Big Data Project

$1M USD

3 year timeline

20,000 WorldView Images

Map land cover: coast-50 km inland



Problem

Big Data processing efficiency

Automation issues

• Consistency

• Thresholding

• Sunglint

• Water column

Solution

Automation

Automation solutions

• Standardized preprocessing

• Scene-specific algorithms

• Novel deglinting algorithm

• Novel correction algorithm

Objective: Large-scale mapping



Python code

Matlab code

WorldView-2&3 Images
Texas: 2,284

Mosaic

Classified Map

Traditional Methods: 5.2 years

USF CIRCE Cluster:
419 nodes
9152 cores

46TB memory
222 GPUs

Spectral and
Object-based
Automated
Land cover
Classification of
High-resolution
Imagery

Methodology: SOALCHI Workflow
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Methodology: SOALCHI Workflow

Pgc_ortho.py

• Written by Polar Geospatial Center

• Steps

• Ingest Level-1B WorldView NITF

• Optional georectification using RPCs

• Project to WGS 1984 (EPSG:4326)

• Output Level-2B GeoTIFF

• Run time = 5-15 minutes per image
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Methodology: SOALCHI Workflow

WV_Classify.m

• Written by M McCarthy

• Steps

• Ingest Level-2B GeoTIFF + metadata XML

• Convert DN to Radiance

• Correct for Rayleigh scattering

• Convert to Rrs

• Decision Tree preparation

• Decision Tree

• Post-processing filter
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Methodology: SOALCHI Workflow

WV_Classify.m

• Written by M McCarthy

• Steps
• Ingest Level-2B GeoTIFF + metadata XML

• Convert DN to Radiance

• Correct for Rayleigh scattering

• Convert to Rrs

• Decision Tree preparation
• Upland vs Wetland

• Scene-specific algorithm

• Wetland < Average(sum(B3-B5))

• Decision Tree

• Post-processing filter
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Methodology: SOALCHI Workflow

WV_Classify.m

• Written by M McCarthy

• Steps
• Ingest Level-2B GeoTIFF + metadata XML

• Convert DN to Radiance

• Correct for Rayleigh scattering

• Convert to Rrs

• Decision Tree preparation
• Deglint

• Isolate glint pixels from ODW (novel algorithm)

• Dual-array of WorldView imagery

• Regress visible bands against NIR for slope

• Rrsdg,i = Rrsi – (Slopei*(RrsNIR – RrsNIRmin))

• Decision Tree

• Post-processing filter
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Methodology: SOALCHI Workflow

WV_Classify.m

• Written by M McCarthy

• Steps
• Ingest Level-2B GeoTIFF + metadata XML

• Convert DN to Radiance

• Correct for Rayleigh scattering

• Convert to Rrs

• Decision Tree preparation

• Estimate water column properties (Kd)
• Calculate IOP index (Li 2019, Hu 2012)

• Based on ODW

• Estimate chlorophyll-a content (Hu 2012)

• Decision Tree

• Post-processing filter
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Methodology: SOALCHI Workflow

WV_Classify.m

• Written by M McCarthy

• Steps
• Ingest Level-2B GeoTIFF + metadata XML

• Convert DN to Radiance

• Correct for Rayleigh scattering

• Convert to Rrs

• Decision Tree preparation

• Decision Tree

• Calculate bathymetry (from Kd)
• Revised from Li 2019 with exponential scalars 

derived from WorldView field data tuning 
parameters

• Post-processing filter
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Methodology: SOALCHI Workflow

WV_Classify.m

• Written by M McCarthy

• Steps

• Ingest Level-2B GeoTIFF + metadata XML

• Convert DN to Radiance

• Correct for Rayleigh scattering

• Convert to Rrs

• Decision Tree preparation

• Decision Tree

• Post-processing filter
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Methodology: Mosaicking

Mosaic

• Python

• GDAL library

• Automated image-stitching

Mosaic

Classified Map



Examples

• Deglinting



Examples

• Deglinting



Examples

• Bathymetry mapping

• Key West

RMSE = 0.64 +/- 0.06 m



Results: 
Texas



NOAA 2010 SOALCHI



NOAA 2010SOALCHI



SOALCHI Digital 
Elevation 

Model



SOALCHI Water Flow



Applications

• Sustainable Development

• Flood Hazards

• Land cover + topography + SfM

• Machine Learning

• Large training dataset



SOALCHI Method Validation

McCarthy et al. (2020) International Journal of Applied Earth Observations and Geoinformation

Purpose

- Map hurricane damage

- Compare pros and cons

Algorithms

• SOALCHI

• Support Vector Machine

• Neural Network

Data

- WorldView-2 (Nov 2018)

Training & Validation

• 714 field survey points



Results

Producer’s 
Accuracy

Decision Tree Support Vector 
Machine

Neural Network

Soil 97% 92% 92%

Damaged 
Mangrove

38% 62% 57%

Healthy 
Mangrove

63% 69% 75%

Upland 
Vegetation

91% 86% 88%

Water 100% 100% 100%

Overall 
Accuracy 
(Kappa)

83% (0.765) 83% (0.767) 85% (0.792)



Conclusions

Pros Cons

Decision Tree Fastest
Automated
Best Upland vs Mangrove accuracy

Least accurate damaged mangrove

Support Vector Machine Most accurate damaged mangrove Manual training
Slowest

Neural Network Most accurate overall
Most accurate healthy mangrove

Manual training



Natural-disaster monitoring



Background

Hurricane Irma September 2017

Category 3: 120 mph winds

Mangrove damage

• Damaged vs undamaged

• Dead vs recovered

Existing map: 2010 (2 years to create)

Objective: Hurricane-damage assessment



• Identify location, extent, and timeframe of coastal wetland degradation

• Determine chronic vs acute drivers

• Help managers determine how to mitigate loss, understand recovery, and improve 
resiliency

Management Need



1. Map land and aquatic habitats for years 
2010, 2013, 2016, 2017, 2018

2. Detect change location and extent

3. Attribute changes

4. Share information with regional resource managers 
through facilitated meetings and mapping products

Project Goals

Data

• High-resolution WorldView-2 satellite imagery

• Medium-resolution Landsat satellite imagery

• LiDAR data: 2007

• Field surveys (M. Barry)



Methodology

Python code

Matlab code

WorldView-2&3
91 images

GDAL Mosaic

Classified Map

Existing Map: 2 years

USF CIRCE Cluster:
419 nodes
9152 cores

46TB memory
222 GPUs

Spectral and
Object-based
Automated
Land cover
Classification of
High-resolution
Imagery





• Soil: 95%

• Degraded mangrove: 56%

• Healthy mangrove: 78%

• Upland: 68%

• Water: 100%

• Overall accuracy: 82%

Accuracy Assessment: Worldview Nov 2018



WorldView Landsat

Results



WorldView Landsat

Results



WorldView Landsat

Results



Results: Irma Damage



Results: Recovery



Three months post Irma

(WorldView)

Five months post Irma

(WorldView)

Recovery

• Some mangrove 

rebound

• Some mangrove 

die-off 



Net Change:

Pre-Irma to Recovery

Mangrove to Marsh

7.1 km2

~1,750 acres

Mangrove to Bare Soil

1.6 km2

~395 acres

Total Mangrove Decline

10.6 km2

~2,600 acres

McCarthy et al. (2020) Remote Sensing



Mangrove Loss



Maerl overwash
starving mangroves

• Radabaugh et al. 2019

• 11% mortality 2-3 
months post-Irma

• 20% mortality 9 
months post-Irma

~12 cm

Acute Drivers of Loss



Local Sea Level

1966-2017
3 mm yr-1



Local Sea Level

2000-2017
7 mm yr-1



Local Sea Level

2010-2017
14 mm yr-1

2010-2017
40% 

1966-2017 avg



Radabaugh et al. 2019
60% canopy cover 
3 to 9 months post-
Irma

Sunlight reaching 
seedlings

Mangrove Recovery 



Next Steps

Complete Florida mapping

Conduct flood risk mapping

Disseminate results

• SECOORA

• Digital Coast



Questions?
Contact: mccarthymj@ornl.gov

Funding Providers:
NASA, NSF, NOAA, NERR Science Collaborative, NOAA IOOS

Data Providers:

DigitalGlobe and Polar Geospatial Center


