Developing an Integrated Coastal Water Predictive Capability to Promote Resilience to Water Risks

Ruoying He, Jennifer Dorton, Charlton Galvarino Debra Hernandez, Haibo Zong, Joe Zambon, Jennifer Warrillow
Project Goal

To develop an integrated coastal water predictive capability that will deliver new water intelligence products and information vital for decision making both during high-impact weather events, such as hurricanes, nor’easters, and storm surge, and for routine water management, including marine ecosystem health, transportation, and agriculture.

As coastal ocean prediction science is pushed to the land-sea boundary, a critical need arises for implementation of a robust, efficient, multi-scale coupling methodology to accurately describe the interactions between terrestrial hydrology and the coastal ocean at high resolution and fidelity.

We will address this need by developing a prototype baroclinic prediction system that couples three-dimensional coastal ocean predictions with NOAA’s National Water Model (NWM) forecasts.
Project sites

Two river-ocean subsystems representing distinct end-members are considered

1) Pamlico Sound in North Carolina: a classic lagoonal system, where river-ocean exchange is through inlets on the Outer Banks. Especially complex river-ocean interactions happen during high impact events when storms, flooding, shoreline breaching, and/or formation of new inlets occur.

2) St. Johns in Florida: a classic estuarine system, where river-ocean interactions are acting continually and affecting navigation, agriculture, and other important human activities and decisions on a daily basis.
Project Approach

National Water Model (NWM) (WRF-Hydro)

NWM streamflow output points

NWM streamflow nowcast and forecast

Collaboration with operational agencies and R2O:
- NOS CO-OPS
- NWS NWC
- NOS CSDL

End users engagement and product development:
- flooding
- water quality management
- marine ecosystem
- navigation ...

Prototype river-ocean coupled nowcast/forecast of:
total water level (tides & surge),
& currents
salinity,
water temperature,
residence time
for Pamlico Sound and St. Johns River and their adjacent shelf seas

https://comt.secoora.org/
CNAPS
Coupled Northwest Atlantic Prediction System

Providing daily nowcast and 3-day forecast of regional marine environment
A Fully Coupled Ocean-Atmosphere-Wave Prediction System (7-km spatial resolution)
Project Approach (con’t)

Based on NOAA IOOS funded three-dimensional baroclinic NW Atlantic regional prediction system

http://omgsrv1.meas.ncsu.edu:8080/CNAPS/
https://eds.ioos.us/
Hurricane Florence
Florence dropped 35.93 in. (913 mm) of rain in Elizabethtown, NC, the wettest tropical cyclone in the Carolinas.
Model coupling of ocean-atmosphere-river

In collaboration with John Warner (USGS) and George Xue (LSU)
St. Johns system (800 m resolution): L2 model simulated

St. Johns system (160 m resolution): L3 model simulated

SSH

SST

SSS

https://comt.secoora.org/
SJR model validation

Storm Surge verification

Water level - Mayport Bar Pilots Dock, FL

Days since 9/1/2016

https://comt.secoora.org/
SJR model validation (con’t)

Model(L3)-Data Comparisons

Water level [m]

Salinity

https://comt.secoora.org/
L3 (160 m res)

Hourly prediction:

LEFT: SSH + Surface (u,v)

RIGHT: Surface Salinity

With wetting/drying

https://comt.secoora.org/
Goal
• Develop an integrated coastal water predictive capability that will deliver new water intelligence products and information vital for decision making

Approach
• A prototype baroclinic prediction system that couples three-dimensional coastal ocean predictions with NOAA’s National Water Model (NWM) forecasts

Progress
• developed functional multi-level nested baroclinic ocean models for two sub regional study sites.
• continue working on extensive validation against observations from regional networks
• continue working on ocean-river coupling

Stakeholder engagement
• Flooding and coastal inundation
• Water resource and water supply management
• Water quality risks to marine ecosystem and coastal communities
• Marine transportation and navigation

https://comt.secoora.org/