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Disclaimer

e Not a statistician

e But... ecology requires good
statistical practice

e \Very little formal training in
statistics and math

e Good collaboration with many
statisticians
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Movement in one dimension - relatively easy!
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More to fish movement than a single dimension

The Environment

Cognitive

—» Navigation process

-3 Motion process

-3 Movement propagation process
— Internal state dynamics

~—3= External factor dynamics

Biomechanical Random
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Motion Capacity <&
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Need tools that can help us to work in at least two dimensions
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We can even work in three dimensions, or four!
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aquatic animal from detections at fixed stations.

2. This method of underwater geolocation is evolving with new software and
hardware options available to help investigators design studies and calculate
positions using solvers based on i of-arrival and
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test performance, synchronize receiver clocks and calculate positions from the
detection data. We additionally present some common positioning algorithms,
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Ecological modelling is overwhelming

Linear models

Mixed models

Hierarchical models

Additive models

Multiple regression

Survival analysis/ time-to-event
Multivariable regression
Machine learning

Non-linear effects

Correlation

Causative modelling

Species distribution models
Step selection models
Resource selection models
Regression tree analysis
Predictive modelling

Bayesian zero inflated hierarchical probabilistic inference
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Ecological modelling is spatial

Variogram
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Snook movements in Clam Bayou on Sanibel Island*
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How | think about ecological modelling

e Partitioning variance
e \What affects a response?
e Lots of individual variation in movement

treatment + 111D + time + space

Treatment Individual Space and Time
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How | think about ecological modelling

e Partitioning variance
e \What affects a response?
e Lots of individual variation in movement

treatment + 1]ID + time + space

Treatment Individual Space and Time



Spatiotemporal Modelling

Tobler’s First Law of Geography

Everything is related to everything else,
but closer things are more related to
each other

e This implies that animal responses
must depend on location

e Important to include space as a
covariate in models with acoustic
telemetry
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ABSTRACT

Indﬁspape.mdimmanafmimlnlwpuyﬂu:ppmxhzslomod:ﬁng
complex in ecological data: the generalized additive model (GAM) and the
hierarchical model (H(,LM) 'l'h-: hmrd\u:l GAM (HGAM), allows modeling

of nonlinear i between and out where the
shape of the function itself varies between different grouping levels. We describe the
theoretical connection between HGAMs, HGLMs, and GAMS, explain how to model
different assumptions about the degree of intergroup variability in functional
response, and show how HGAMs can be readily fitted using existing GAM software,
the mgev package in R We also discuss computational and statistical issues with
fitting these models, and demonstrate how to fit HGAMs on example data. All code
and data used to generate this paper are available at: github.com/eric pedersen/

mixed-effect-gams.

Subjects Ecology, Statistics, Data Science, Spatial and Geographic Information Science
Keywords Generalized additive modcls, Hicrarchical models, Time series, Functional regression,
Smoothing, Regression, Community ecology, Tutorial, Nonlinear estimation

INTRODUCTION

"Two of the most populas and powerful modeling techaiques currently in use by ecologists
are generalized additive models (GAMs: Woud, 2017a) for modeling flexible regression
functions, and generalized linear mixed models (“hierarchical generalized linear models™
(HGLMs) or simply “hierarchical models™; Bolker et al, 2009, Gelman et al, 2013)

for modeling between-group variability in regression relationships.

At first glance, GAMs and HGLMs are very different tools used to solve different
problems. GAMs are used to estimate smooth functional relationships between predictor
variables and the response. HGLMs, on the other hand, are used to estimate linear
relationships between predictor variables and response (although nonlinear relationships
can also be modeled through quadratic terms or other transformations of the predictor
variables), but impose a structure where predictors are organized into groups (often
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The basis function - the math behind the magic

GAMs use a linear
combination of basis
functions

Basis functions are
penalised to reduce
overfitting

Speed (m/s)

Basis function value

s(depth,bs="tp", k=3) s(depth,bs="tp", k=5) s(depth,bs="tp", k=10) s(depth,bs="tp", k=15)
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Making some choices

Model — large k model — linear model simple additive model
large k model || linear model || simple additive model
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Making some choices

Predicted Depth (m)

2001

Model — large k model — linear model simple additive model

large k model || linear model || simple additive model
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5. Pick the right regression family

Gaussian Change in depth, temperature, or acceleration, location along a one-dimensional gradient | Pillans etal- (2022)
(e.g. latitude, longitude) where the zero point on the gradient is arbitrary

Binomial Presence or absence, inside or outside area of interest, at risk or not at risk of exposure Lennox et al. (2022)
based on time and location of a detected animal, probability of being at rest at a given
time

ﬁ)‘;?iiitci‘)”a' Modelling true presence and pseudo-absence data from tracking data on environmental ]gff(fg:;et al. (2021)
covariates to calculate selection strength

Cox.ph Modelling time-to-event for individually tagged animals to reach an outcome such as olomms et al (2022)
departure from an area, recapture by fishers, or natural mortality (e.g. Whoriskey et al.
2019) with smoothed covariates.

Negative Count of individuals at a location Bino et al. (2018)

binomial

Poisson Count of individuals at a location Hessler et al. (2023)

Gamma Depth, temperature, acceleration Nash et al. 2022

Tweedie Westrelin et al.

Potentially can be used for modelling continuous zero-inflated variables, such as
movement speed for individuals that alternate between moving and resting

(2018); Rodrigues et
al. (2022)

Beta

Fraction of the day spent active,
Depth as a fraction of the water column

Secor et al. (2021)
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Range testing with GAMs
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Mean acceleration by sampling point
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Lunar effects
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Is activity affected by lunar illumination?
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Linear regression acceleration ~ moonlight

250

200

150

100

50

0.00

0.25

0.50
lun

0.75

1.00



Linear mixed regression acceleration ~ moonlight + (1|ID)
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Additive mixed regression moonlight ~ s(moonlight) + (1|ID)
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Full

model summary with gratia::draw
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Complex spatiotemporal model

. N
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Lunar effects across space
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FAQ: Why smooths and not SPDE?

upaates |

Understanding the Stochastic Partial 46.5

Differential Equation Approach to Smoothing

46.0

David L. MILLER®, Richard GLENNIE®, and Andrew E. SEATON® Mean diff

Correlation and smoothness are terms used to describe a wide variety of random
quantities. In time, space, and many other domains, they both imply the same idea: 455

|
quantities that occur closer together are more similar than those further apart. Two popular % 0.05
statistical models that represent this idea are basis-penalty smoothers (Wood in Texts =] 0.00
in statistical science, CRC Press, Boca Raton, 2017) and stochastic partial differential g
equations (SPDEs) (Lindgren et al. in J R Stat Soc Series B (Stat Methodol) 73(4):423— —145.0 -0.05
498, 2011). In this paper, we discuss how the SPDE can be interpreted as a smoothing
penalty and can be fitted using the R package mgcv, allowing practitioners with existing -0.10
knowledge of smoothing penalties to better understand the implementation and theory -0.15

behind the SPDE approach. 44.5
Supplementary materials accompanying this paper appear online.

Key Words: Smoothing; Stochastic partial differential equations; Generalized additive
model; Spatial modelling; Basis-penalty smoothing. 44.0

58 59 60
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1. INTRODUCTION



ID

AQ: Can mgcv incorporate random effects?
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FAQ: Can we smooth in three spatial dimensions?

gam(oxygen ~ s(Xx, y, z), data=oxygen, method="reml”)
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FAQ: Can we smooth around borders?

https://blog.benjaminhlina.com/post
s/post-with-code/soapcheckr/

Basis: Soap film



FAQ: Can we smooth around borders?

A ) Red indicates soap film surface
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My favourite example 1
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My favourite example 1
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My favourite example 2

Salmo salar || Salmo trutta
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My favourite example 2

Salmo salar || Salmo trutta
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My favourite example 2

Salmo salar || Salmo trutta
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What can GAM theory teach us about designing studies

Lesson 1- sampling rates

e Transmitters provide immense volumes of data, particularly from sensors
e Depth, temp, accel are highly autocorrelated and often have to be subsampled
e When animals do not leave a study area, longer sampling intervals can be used

% . e




ACF

Subsetting sensor data to reduce temporal autocorrelation

e Full time series highly autocorrelated
e Subset series has less autocorrelation

=i Tag with 120 s delay -

<« 2 < | Subset to 1 hr
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What can GAM theory teach us about designing studies

Lesson 2- array design

e Using spatial smoothers allows us to
interpolate some data

e Should consider how far is appropriate to
smooth across based on changes in habitat
and water chemistry

e Design receiver grids to limit excessive
smoothing

e \Where possible, use evenly gridded
sampling designs




What can GAM theory teach us about designing studies

Lesson 2- array design

e Using spatial smoothers allows us to
interpolate some data

e Should consider how far is
appropriate to smooth across based °
on changes in habitat and water
chemistry

e Design receiver grids to limit
excessive smoothing

e Where possible, use evenly gridded
sampling designs




Novel areas and applications of GAMs

e \Validating GAMs for step selection analysis

e Extending GAMs to include point process
models

e Incorporating phylogenetic correlations to
account for violation of independence

e Examples of three dimensional spatial fields




Step Selection
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Novel areas and applications of GAMs

Vetidatina-CAMs- et s

e Extending GAMs to include point process
models

e Incorporating phylogenetic correlations to
account for violation of independence

e Examples of three dimensional spatial fields




