Supporting Public Health and Local Beach Economies by Integrating In Situ Monitoring, Remotely Sensed Products, and Coastal/ Ocean Observing Systems Matthew Neet, Dan Ramage and Dwayne Porter¹ Heath Kelsey and Adrian Jones² ¹University of South Carolina, Arnold School of Public Health ² University of Maryland Center for Environmental Science, Integration and Application Network 09 January 2015 ## Outline - * Introduction - * Goal and objectives - * Developing a tool - * Data integration and processing - * Predictive models - * How's the Beach tool - * Accomplishments - * Proposed future directions - * Current status - * Study area - * Proposed collaborations - * Questions - * Wrap up #### Introduction Clean swimming waters - - Mom and dad happy! - Chambers of Commerce happy! Exposure to bacterial-laden swimming waters – Mom and dad happy! Chambers of Commerce happy! Ain't no one happy!!! #### Who we are * With funding from NOAA Geodetic Surveys and Services, IOOS, SECOORA, EPA, and SCDHEC, we are a collaboration among: ## Our brief history ## Goal and objectives * The ultimate **goal** of our work is to assist public health, beach management, and tourism officials in support of improved decision making. #### * Our **objectives** are to: - * Develop locally-relevant decision-support tools to support our goal, and - Demonstrate the geographic and thematic transferability of our tool development approach. ## Developing a tool - * In our previous efforts, a water quality tool (app) was developed for beach managers and beach-goers: - * Designed to predict bacteria concentrations in beach waters - * The forecasting tools synthesize data from multiple data platforms (e.g. remote sensing, sampling, Integrated Ocean Observing System, etc.) - * Statistical models are developed to create predictions - * The tool is automated and updates the database where decision rules are applied to generate the forecasts - * Forecasts are provided to local health officials and displayed via the website and mobile app ## Developing a tool #### Tijuana River NERR Model Marsh 2003 0.2 1968 1972 | Date | Time | Temp | SpCond S | ial | | 00 | Depth | pН | Turb | | |------------|----------|------|----------|------|--|------|-------|-------------|------|-----| | WW/DD/YYYY | hh:mm:ss | C | mS/cm | ppt | % | mg/L | m | | NTU | | | 01/01/2003 | 00:00:00 | 12.4 | 056.75 | 37.6 | 066.0 | 05.6 | 0.52 | 07.7 | | | | 01/01/2003 | 00:30:00 | 13.3 | 056.94 | 37.8 | 068.1 | 05.6 | 0.52 | 07.8 | | | | 01/01/2003 | 01:00:00 | 14.1 | 057.25 | 38.1 | 011.0 | 01.7 | 0.72 | 01.9 | | | | 01/01/2003 | 01:30:00 | 13.3 | 056.86 | 37.8 | 010.3 | 01.3 | 0.68 | 01.7 | • | | | 01/01/2003 | 02:00:00 | 13.0 | 056.22 | 37.3 | 071.3 | 06.0 | 0.55 | 01.6 | • | | | 01/01/2003 | 02:30:00 | 12.8 | 055.34 | 36.6 | 063.9 | 05.4 | 0.50 | 01.6 | • | | | 01/01/2003 | • • | 4 | | • | | | | , | | | | 01/01/2003 | 16 | | · | | | | • | • | | | | 01/01/2003 | 1.6 7 | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | · | | | | | | 01/01/2003 | 1.4 - | | | | • | | | · · | | i i | | 01/01/2003 | i | | | | - | | | | A | - 1 | | 01/01/2003 | , 1.2 | | | | | | | | | 1 | | 01/01/2003 | <u> </u> | • | | | | | | | | ı | | 01/01/2003 | 2 1 | • | • | | | | | 4 | , | | | 01/01/2003 | 2 0.8 + | • | r | • | | | | | • | | 1976 1980 Date 1984 1988 1992 # Developing a tool | 2000 1945 | | | |----------------|--|------------| | Marine Carlot | | To the A | | MINISTER STATE | | Cartain Se | | 多 安排第二次 | | | | | | | | | e | | | | - | | | AND A | Jan Kall | | | | WALKEN THE STATE OF O | | | | | | | | <i>y</i> | | | | | | Source | Bacteria | No.
Isolates | No.
Isolates | Total No. of Isolates | |-----------|---|-------------------------------|-----------|---------------------------|-----------------|-----------------|-----------------------| | Species | Fecal Coliform
(density/g [wet
wt] feces) | Source | Alligator | Aeromonas
hydrophila | 24 | 7 | 31 | | Alligator | 8.0×10^9 | Johnston et al. 2010 | ringator | Aeromonas | | | | | | 3.0×10^9
1.6×10^{10} | Current Study | | punctata
Aeromonas | 1 | 0 | 1 | | Duck | 3.3×10^7 | Schueler and Holland, 2000 | | veronii
Citrobacter | 23 | 1 | 24 | | | 8.1×10^3 | Cox et al. 2005 | | freundii | 47 | 45 | 92 | | Human | 1.3×10^7 | Schueler and Holland, 2000 | | E. coli
Edwardsiella | 21 | 20 | 41 | | Dog | 2.3×10^7 | Schueler and Holland, 2000 | | tarda | 0 | 12 | 12 | | | 3.1×10^7 | Cox et al. 2005 | | Enterobacter | 0 | 3 | 3 | | Turtle | 1.6×10^6 | Harwood et al., 1999 | | aerogenes
Enterobacter | | | | | Cow | 2.3×10^5 | Schueler and
Holland, 2000 | | cloacae
Klebsiella | 16 | 5 | 21 | | | 1.8 x 10 ⁵ | Cox et al. 2005 | | planticola | 3 | 2 | 5 | ## Data integration and processing Observations? ... what observations? Unknown and/or overwhelming! ## Data integration and processing Field programs Observing systems Remote sensing / Models - Bacteria density - Salinity - Air/water temp - Tide - Weather - Rainfall - Currents - Salinity - Wind - Salinity - Air/water temp - Rainfall - Currents - Wave activity ## Data integration and processing - Data collected from a variety of sources - * Collated, summarized, and processed - * Historical data used to develop water quality algorithms - Statistical modeling done with both: - R statistical software - * EPA's Virtual Beach software - * Algorithms applied to new data and water quality predictions/forecasts made - Results uploaded for use in app/ website Models have to be accurate, reliable, understandable and implementable! - * Statistical models were created using input and survival factors - * Regression models were developed using VIF, p-values, BIC (Bayesian Information Criterion), and backwards elimination - * Model performance and validation utilized BIC, R², Adj-R², ROC curves #### Model complexity is ... - Location - Availability of data - Acceptable error - Errors of omission - Fail to issue advisory when water quality is poor - Public health risk #### Errors of commission - Issue advisory when water quality is good - Poor image / revenue loss (i.e. the Chamber of Commerce is not happy) | Level 1 | Level 2 | Level 3 | | | |------------------------|------------------------|------------------------|--|--| | Cumulative
Rainfall | Cumulative
Rainfall | Cumulative
Rainfall | | | | Rain Intensity | Rain Intensity | Rain Intensity | | | | Preceding Dry
Days | Preceding Dry
Days | Preceding Dry
Days | | | | Weather | Weather | Weather | | | | | Tidal Range | Tidal Range | | | | | Lunar Phase | Lunar Phase | | | | | | Station | | | | | | Wind Speed | | | | | | Wind Salinity | | | #### How's the Beach tool - * Water quality advisory app - * Provides near real-time forecasts along beach of interest - * Provides quick "go/nogo" recommendations for swimming and water activities #### How's the Beach tool End result is a decision-support tool available at your fingertips for public health, economic and personal decision making resulting in... ## How's the Beach tool ... a win - win situation for public health and economic vitality! ## Accomplishments - * Worked with public health officials, water quality scientists, beach managers, etc. to develop an ensemble modeling approach-based decision support tool that ... - * predicts bacterial concentrations for swimming beaches and shellfish harvesting waters - * Published mobile app and website - * Beach monitoring and coastal management programs can demonstrate a savings of tax dollars ## Proposed future directions - * And now we would like to do the same in southwest Florida! - * The ultimate **goal** of our work is to assist public health, beach management, and tourism officials in support of improved decision making. - * Our **objectives** are to: - * Develop locally-relevant decision-support tools to support our goal, and - * Demonstrate the geographic and thematic transferability of our tool development approach. #### Current status - * We have acquired and are working with weekly bacterial data from the FL DOH - * From roughly Fall 2014 back to 2002 - * We are acquiring historical data from a variety of buoys and other platforms - * Salinity - * NEXRAD rainfall - * Water and wind temperature - * Etc. # Study Area ## Proposed collaborations - * Would like to work with you to: - * Share our modeling techniques and results - * Provide a beach app/website of modeling results in near realtime - * But, before that, we would like to know: - * What is important to you and your respective departments? - * What would you like to see in terms of informing populations using beach waters? - * Etc. ## Wrap up - * We appreciate the opportunity to work with: - * FL and County Department of Health - * Division of Disease Control and Health Protection - * Bureau of Environmental Health, Water Programs - * Water Toxins Program Public Health Toxicology - * GCOOS RA - * Mote Marine Lab - * Local tourism officials - * Any other identified partners # Questions - * Questions? - * Concerns? - * Suggestions? - * Etc.