Webinar Series

Join SECOORA as we highlight coastal ocean observing in the Southeast! SECOORA members, principal investigators, technology experts and more will be featured every month on the webinar series.

Monthly, usually every 4th Tuesday at 12 PM ET, invited speakers will discuss ocean observing topics.Each webinar will be 60-minutes and recorded and archived for future viewing.

Join the community coastal ocean observing conversation!

Upcoming Webinars

Archived Webinars


Upcoming Webinars (all webinars at 12 PM ET)

Date of Webinar Title Presenter Link to Register Download Flyer
September 25, 2018

Observations to Understand Life in the Ocean: Linking IOOS Regional Efforts with the Marine Biodiversity Observation Network (MBON)

Frank E. Muller-Karger, College of Marine Science, University of South Florida Click to Register Download the Flyer (please share)

Observations to Understand Life in the Ocean: Linking IOOS Regional Efforts with the Marine Biodiversity Observation Network (MBON)

Presenter: Frank E. Muller-Karger, College of Marine Science, University of South Florida
Date: September 25, 2018 | 12:00 PM ET

Reserve your spot!

Download the Flyer (please share)

 

Life in the sea supports many industry sectors and is enjoyed by large numbers of people living in coastal and in inland areas. The Marine Biodiversity Observation Network (MBON) links groups engaged in ocean observation to track changes in the diversity and abundance of life in the sea. We invite the IOOS community to join in the dialogue with stakeholders and MBON to refine these ideas and advance an integrated system to observe life in the sea. 

Abstract

Life in the sea supports many industry sectors and is enjoyed by large numbers of people living in coastal and in inland areas. The Marine Biodiversity Observation Network (MBON) links groups engaged in ocean observation to track changes in the diversity and abundance of life in the sea. This information is needed to measure whether the benefits that people derive from different marine organisms are affected or not as we find ways to sustain their uses while the ocean is changing.

In the region covered by the Southeast Coastal Ocean Observing Regional Association (SECOORA), MBON works in partnership with the Florida Keys National Marine Sanctuary and the Integrated Ocean Observing System to integrate traditional and new means of tracing changes in marine biodiversity. We developed novel environmental DNA methods and are developing indicators to evaluate changes in living communities. Dynamic ‘seascapes’ based on remote sensing extend the spatial footprint of in situ data to track dynamic biogeographic regions. We promote adoption of the Darwin Core data schema as a way to standardize archiving and distribution of marine biology data. This is essential if we want to understand patterns of change in marine life in any locality in the context of changes happening over large areas, and broadly share applications to do so.

Internationally, MBON works with the Global Ocean Observing System (GOOS), the Ocean Biogeographic Information System (OBIS), the IOC Ocean Best Practices Group, and others to promote documentation of marine biodiversity for the benefit of society. The goal is to integrate marine biological Essential Biodiversity Variables (EBVs) and Essential Ocean Variables (EOVs) into the existing and planned national and international ocean observing systems. We invite the IOOS community to join in the dialogue with stakeholders and MBON to refine these ideas and advance an integrated system to observe life in the sea.

Reserve your spot!


Archived Webinars

Title of Webinar (click on title to view video) Presenter Date Recorded
Resolving the Loop Current Complex: Implications for Hurricane Intensity Forecasting Lynn Keith (Nick) Shay, PhD  – University of Miami’s Rosenstiel School of Marine and Atmospheric Science August 28, 2018
The Power of Observations for improved decision making in support of public health and economic vitality: Gathering Alligators, Taking Observations, Realizing Solutions Dwayne Porter, PhD, University of South Carolina  July 24, 2018
Passive acoustic monitoring on a SV3 Wave Glider for fish spawning aggregation detection and characterization Laurent Cherubin, FAU’s Harbor Branch Oceanographic Institute April 24, 2018
Next Generation SECOORA Data Portal Stacey Buckelew, Axiom Data Science and Brian Stone, Axiom Data Science  February 27, 2018
West Florida Shelf and Tampa Bay Responses to Hurricane Irma: What Happened and Why Dr. Robert Weisberg, University of South Florida College of Marine Science February 13, 2018
Recording Water Levels Through Citizen Science Reporting Christine Buckel, National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science December 19, 2017
Web Camera Applications Testbed (WebCAT) Project Webinar Debra Hernandez (SECOORA), Mark Willis (Surfline), Joseph Long (USGS), Greg Dusek (NOAA CO-OPS), Dwayne Porter (USC) November 28, 2017
SECOORA Marine Weather Portal Jennifer Dorton, SECOORA and Charlton Galvarino, Second Creek Consulting, LLC October 24, 2017
A year and A Hurricane Apart: Nutrient Loading in the St. Lucie Estuary in the Summers of 2016 and 2017 Dr. Ian Walsh, Director of Science and Senior Oceanographer, Sea-Bird Scientific October 3, 2017
Predicting Marine Physical-Biogeochemical Variability in the Gulf of Mexico and Southeastern U.S. Shelf Seas Dr. Ruoying He, North Carolina State University September 6, 2017
SECOORA Data Portal Kyle Wilcox, Axiom Data Science March 21, 2017
Coastal Ocean Circulation Influences on Matters of Societal Concern Dr. Bob Weisberg, University of South Florida College of Marine Science February 28, 2017

Resolving the Loop Current Complex: Implications on Hurricane Intensity Forecasting

Lynn Keith (Nick) Shay, PhD  – University of Miami’s Rosenstiel School of Marine and Atmospheric Science
Recorded: August 28, 2018


As a hurricane moves over the Gulf of Mexico’s Loop Current, hurricanes often intensify to severe (Category 3) status due to the deep warm water and the sustained air-sea fluxes feeding the storm. Given that the Gulf is a semi-enclosed basin, these intensifying hurricanes will make landfall around the Gulf and significantly impact coastal ocean processes.

In this context, it is critical to understand the 3-dimensional oceanic velocity response of the Loop Current and its complex warm and cold eddy field to hurricane forcing. This allows scientists to accurately evaluate dynamical loading on marine oil facilities and to assess mixing and dispersion of oil products through the water column. In addition, it is critical to understand the vertical extent of wind-forced ocean processes such as upwelling and downwelling of isotherms. In this context, measurements of ocean current, temperature and salinity fields prior, during, and subsequent to hurricane passage are critical to resolve these upwelling and mixing processes. Measurements also provide reference data sets to initialize, evaluate, and validate coupled forecast models.

As part of NOAA’s Hurricane Field Program over the past two decades, profilers have been deployed in the LC from NOAA research aircraft during hurricanes Isidore and Lili, Katrina and Rita, Gustav and Ike, Isaac and Nate. During Nate, the Gulf of Mexico Research Institute sponsored EM-APEX floats measured the hurricane-induced ocean response to the strong winds. These profiler measurements are cast into 2-dimensional satellite fields derived from multiple missions to estimate oceanic heat content, mixed layer and isotherm depths, and sea surface temperatures as part of ongoing research with scientists from NOAA-NESDIS. The oceanic response affects physical processes as well as biochemical processes and the ecosystem through upwelling, mixing and transport throughout the water column.

Download the PDF of Presentation

The Power of Observations for improved decision making in support of public health and economic vitality: Gathering Alligators, Taking Observations, Realizing Solutions

Dwayne Porter, PhD, University of South Carolina
Recorded: July 24, 2018


A goal of NOAA’s National Ocean Service is to increase coastal intelligence with a commitment to integrating scientifically-defensible data, models, and decision-support tools to improve the ability of decision makers scaling from federal agencies to the private individual. Implementation and maintenance of robust data management and communications infrastructures are critical challenges for development of successful collaborative scientific and management initiatives.

Enhancing and expanding the value and utility of the data provided by individual observing systems and monitoring programs is of utmost importance. To be valuable, decision support tools must be able to integrate and assimilate data from multiple observing systems and monitoring programs in order for management communities to address societal needs beyond the original purpose of any individual system/program.

This webinar will provide an overview of the value derived by integrating data and sound science in support of public health and economic vitality decision making. Examples will be provided to illustrate instances where management decisions have benefited from decision support tools that make use of data integrated across multiple coastal and ocean observing systems.

Download the PDF of Presentation


Passive acoustic monitoring on a SV3 Wave Glider for fish spawning aggregation detection and characterization

Laurent Cherubin, FAU’s Harbor Branch Oceanographic Institute
Recorded: April 24, 2018


Many commercially important reef fishes in the Caribbean and southeast US have been overfished to the point that some species, like the Nassau grouper, is considered threatened and on the endangered species list. Mature adults of some species gather in large numbers every year for two to three months at specific locations to spawn.

Once located, the spawning aggregations become an easy target that can be reduced until it can no longer be formed. Most grouper and snapper spawning aggregations in the region have been extirpated and the few that have been documented are vulnerable unless protection can be enacted.

We have developed and demonstrated a novel, autonomous approach to conduct fishery independent surveys in order to search and discover unreported aggregations by mapping the underwater acoustic landscape using an unmanned platform in areas that surround currently known spawning aggregations during the spawning season.

While passive acoustic methods have previously been used for fisheries management and stock assessment, the platforms and algorithms are not currently mature enough to allow for advanced autonomy, drastically limiting the spatial and temporal range, and resulting in considerable operational costs.

In addition to discovering previously unknown spawning sites, the development of novel algorithms, and passive acoustic and environmental sensor systems enables monitoring along with automated detection, classification and surveillance of fish vocalizations.

As well as providing significantly finer scale detection with low latency, this innovative approach also enables greater on-board intelligence and autonomy; reduced launch/recovery and satellite data cost thus further reducing the overall operational costs, while enhancing performance for ocean monitoring missions.


Next Generation SECOORA Data Portal (v2.5)

Stacey Buckelew and Brian Stone, Axiom Data Science
Recorded: February 27, 2018


Building on many years of stakeholder feedback, SECOORA and its technical partner, Axiom Data Science, have been working on a significant overhaul to the SECOORA Data Portal. The updated portal is currently available in beta version (v2.5) to give users access to new features and a revamped design to get more out of the SECOORA data services. The new portal exists on a platform that is more responsive to long time series observations, and has been updated with more advanced discovery and sharing capabilities. The portal offers sophisticated charting abilities, including comparisons between data sources, binning by time, and plotting of climatologies and anomalies. Users can create custom compilations of sensor and model outputs, which can be shared to spotlight environmental events or geographic locations. Ocean profiling sensors, such as gliders, have been enhanced to display depth charts, interpolation via kriging, and 4D interactive charts.

Feedback from test users on the new interface will be integrated into the final, operational version that is expected to replace the current one in April 2018. With these new features, the SECOORA Data Portal will serve as a more powerful tool for users to explore relationships and trends in the physical, chemical, and biological data collected from the waters surrounding the southeast coastal region.

West Florida Shelf and Tampa Bay Responses to Hurricane Irma: What Happened and Why

Dr. Robert Weisberg, University of South Florida College of Marine Science
Recorded: February 13, 2018


Hurricane Irma impacted the west Florida continental shelf (WFS) as it transited the State of Florida from September 10-12, 2017, first making landfall at Cudjoe Key and then again at Naples, as a Category 2 hurricane. The WFS response to Irma is analyzed using a combination of in situ observations and numerical circulation models. The observations include water column velocity, sea surface temperature, winds and sea level. The models are: 1) the West Florida Coastal Ocean Model (WFCOM) that downscales from the deep Gulf of Mexico, across the shelf and into the estuaries by nesting the unstructured grid FVCOM in the Gulf of Mexico HYCOM and 2) the Tampa Bay Coastal Ocean Model (TBCOM) that provides much higher resolution for the Tampa Bay vicinity (Tampa Bay, Sarasota Bay, the Intracoastal Waterway and all of the inlets connecting these with the Gulf of Mexico) by nesting FVCOM in WFCOM.

Both the observations and the model simulations revealed strong upwelling and vertical mixing followed by a downwelling as the storm passed by. This was accompanied by a rapid drop in sea surface temperature by about 4 degrees C and large decreases in sea level with negative surges causing drying in the Florida Bay, Charlotte Harbor, Tampa Bay estuaries and the Big Bend region. The transport and exchange of water between the shelf and the estuaries and between the shelf and the Florida Keys reef track during the hurricane have important ecosystem and sediment transport implications, including an inlet breach that occurred at the Pinellas Co. Shell Key preserve.

PDF of Presentation

Recording Water Levels Through Citizen Science Reporting

Christine Buckel, National Oceanic and Atmospheric Administration’s National Centers for Coastal Ocean Science
Recorded: December 19, 2017


National Oceanic and Atmospheric Administration (NOAA) in partnership with the University of North Carolina, Institute of Marine Sciences, has developed a water level reporting application.  The application collects and aggregates reports of observed water levels submitted through citizen scientists.  These contributions are photographs with locations and a few simple details that will help weather predictors, scientists, and the public to better visualize and understand changing water levels. This application can be used globally to document high water levels at the coast, such as king tide events, but also far inland, such as snow melt or heavy rainfall events.

Various state and federal partners are currently using water level reports and photographs as communication and model validation tools.  Explore the web-based application: What’s your water level? Or log a report from your mobile device.

PDF of Presentation

 

Web Camera Applications Testbed (WebCAT) Project Webinar

Debra Hernandez (SECOORA), Mark Willis (Surfline), Joseph Long (USGS), Greg Dusek (NOAA CO-OPS), Dwayne Porter (USC)
Recorded: November 28, 2017


Web cameras are transforming how environmental monitoring is conducted. Video data is being used for applications related to transportation and commerce, preparedness and risk reduction, and stewardship of coastal resources.

The NOS Web Camera Applications Testbed (WebCAT) is a one year project that is installing web cameras in five locations for various purposes – counting right whales, spotting rip currents, validating wave run up models, understanding human use of natural resources and more.  This unique project is a public-private partnership leveraging the expertise and capabilities of private, nonprofit and public sectors.

PDF of Debra Hernandez’s Presentation

PDF of Mark Willis’s Presentation

PDF of Greg Dusek’s Presentation

PDF of Dwayne Porter’s Presentation

SECOORA Marine Weather Portal

Jennifer Dorton (SECOORA) and Charlton Galvarino (Second Creek Consulting, LLC)
Recorded: October 24, 2017


Southeast Coastal Ocean Observing Regional Association (SECOORA) members have worked together since 2007 to develop and continuously improve the Marine Weather Portal (MWP).  The MWP aggregates data provided by the NOAA National Data Buoy Center, National Weather Service (NWS), National Estuarine Research Reserves, IOOS Regional Associations, and other sources into a map-based product specifically developed for the marine community.

The MWP was developed by meteorologists, web designers, data managers, and outreach personnel with the University of North Carolina Wilmington, University of South Carolina, Second Creek Consulting LLC, and NWS offices in coastal states across the Southeast and Gulf of Mexico.  The MWP is currently used to disseminate standardized, consolidated marine information for the SECOORA and Gulf of Mexico Ocean Observing System regions. Explore the portal: http://mwp.secoora.org.

PDF of Presentation

A year and A Hurricane Apart: Nutrient Loading in the St. Lucie Estuary in the Summers of 2016 and 2017

Dr. Ian Walsh, Director of Science and Senior Oceanographer, Sea-Bird Scientific
Recorded: October 3, 2017


The recent history St. Lucie Estuary has included a devastating harmful algal bloom crisis in 2016 and the passage of Hurricane Irma in 2017. SECOORA member Florida Atlantic University broadcasts real time data from the estuary through the Indian River Lagoon Observatory Network of Environmental Sensors (IRLON). The IRLON network includes nutrient and biogeochemical sensors that provide data on the response of the base of the food chain to the mixing and flows of water in the estuary. This presentation will provide a perspective on how the sources of nutrients and high flow events change the environment in the estuary.

PDF of Presentation

Predicting Marine Physical-Biogeochemical Variability in the Gulf of Mexico and Southeastern U.S. Shelf Seas

Dr. Ruoying He, Distinguished Professor of North Carolina State University
Recorded: September 6, 2017 


An integrated marine environment prediction system is developed and used to investigate marine physical-biogeochemical variability in the Gulf of Mexico and southeastern U.S. shelf seas. Such variability stem from variations in the shelf circulation, boundary current dynamics, impacts of severe weather forcing, as well as growing population and associated land use practices on transport of carbon and nutrients within terrestrial systems and their delivery to the coastal ocean. We will report our efforts in evaluating the performance of the coupled modeling system via extensive model and data comparisons, as well as findings from a suite of case studies.

PDF of Presentation

SECOORA Data Portal

Kyle Wilcox, Axiom Data Science
Recorded: March 21, 2017


SECOORA’s data management and communications (DMAC) system implements the U.S. IOOS recommended standards-based web services that promote interoperability, discovery, efficient data aggregation, access, sharing, visualization, and use of coastal ocean data (physical, chemical, biological and geological). The SECOORA Data Portal has over 4,000 datasets that are accessible. Use the to tool explore, download and visualize ocean and coastal data and models in the Southeastern U.S.

The SECOORA Data Catalog contains searchable, downloadable data from all SECOORA-funded observational and modeling assets that include coastal and offshore stations (atmospheric and oceanographic data), IOOS Priority High Frequency Radar Stations, regional and sub-regional coastal circulation, water quality and fisheries habitat models. The catalog also aggregates data from federal and non-federal real-time and non-real time coastal ocean datasets (in-situ, gliders, profilers, drifters, satellite and models) in the SECOORA region.

Coastal Ocean Circulation Influences on Matters of Societal Concern

Dr. Bob Weisberg, University of South Florida College of Marine Science
Recorded: February 28, 2017


The coastal ocean, defined as the continental shelf and the estuaries, is where society meets the sea.  It is where bathing and boating abound, where major recreational and commercial fisheries are situated along with maritime commerce hubs, where harmful algal blooms occur, fossil fuels are tapped and alternative energy sources are considered for exploitation, and where tourists and residents simply go to relax.  In essence, the coastal ocean is the epicenter for maritime ecosystems services.  Managing all of these coastal ocean utilizations, some competitive with one another, and planning for future, sustainable uses, requires the ability to describe the state of the coastal ocean and to predict the effects that may ensue from either naturally occurring or human-induced influences.  The state of the coastal ocean is largely determined by the ocean circulation.  The circulation is what unites nutrients with light, fueling primary productivity, what determines the water properties in which fish and other organisms reside and what controls the movement of larvae between spawning and settlement regions.  The circulation also determines the movement of harmful substances spilled into the sea and the conduct of search and rescue operations.  Applications for red tide, gag grouper recruitment and the transport of Deepwater Horizon oil to northern Gulf of Mexico beaches will be discussed.

PDF of Presentation